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Abstract

In addition to objects, images contain essential infor-
mation such as relations between objects. This project
aims to classify three salient relations in a given image.
An exploratory data analysis was first conducted to under-
stand the relation class distribution. A notable class im-
balance was observed in the training dataset. To tackle
the imbalance, images with frequent classes were under-
sampled and images with infrequent classes were over-
sampled. Three deep learning models have been used in the
project: ResNet50, ResNet101, and Swin Transformer. The
optimization and regularization techniques were applied
for each model to improve the mean recall performance.
The most effective measures included image augmentation,
data whitening, learning rate adjustment, increasing binary
cross-entropy loss weight for infrequent classes, and multi-
plying infrequent class prediction probabilities (i.e., reduc-
ing probability threshold). The model was re-trained in the
union of training and validation datasets before being sub-
mitted to the testing dataset. Multi-task learning was imple-
mented to leverage the semantic segmentation task to im-
prove classification performance. Apart from the aforemen-
tioned approaches, zero-shot models were also proposed
and explored to utilize the knowledge encapsulated in CLIP
and Detectron2. Prompt engineering was performed for
the relation classification. My optimized model is based on
Swin Transformer at a test mean recall of 32.4%.

1. Introduction

This project is working on the problem of identifying 3
salient relations among objects in a given image. The prob-
lem originates from the Panoptic Scene Graph Generation
(PSG) challenge proposed by [9].

A subset of the PSG dataset is provided for this project,
which contains 4494 training images and 1001 validation
images generated from the Microsoft COCO dataset. There
are 50 classes of target relations/predicates to be predicted
and 133 classes of objects existing in images. The pixel nor-
malization statistics of training images are calculated as fol-
lows: mean [0.495, 0.493, 0.491], standard deviation (std)
[0.320, 0.319, 0.320]. Annotations of object detection and

segmentation are also provided as supplemental data which
can be used in the model training.

The relation classes are imbalanced in the training and
validation datasets as shown in Fig. 1. There are 34 relation
classes that have appeared less than 200 times in the train-
ing set. And only 5 classes have appeared more than 1000
times. A few relations do not exist in the training set but do
in the validation set. This imbalance will make the model
difficult to learn to predict infrequent classes. In order to ob-
tain a high mean recall (mR) among classes, the detection of
infrequent relations is of paramount importance. To balance
the input dataset, images with frequent classes were ran-
domly under-sampled and images with infrequent classes
were manually over-sampled by repeating and image aug-
mentation. The experiment result showed a significant mR
improvement by data balancing.

2. Related Work
To solve this relation classification problem, a few re-

lated research works can provide good references and in-
sights, e.g., Scene Graph Generation (SSG), Human-Object
Interaction (HOI), and Visual Question Answering (VQA).

SSG aims to automatically map an image into a seman-
tic structural scene graph, which requires the correct label-
ing of objects with bounding boxes and their relationships.
SSG directly answers the need for relation classification by
producing ⟨subject, verb, object⟩ triplets where the ”verb”
is the relation to be predicted. State-of-the-art (SOTA) SSG
models are based on CNNs and transformers [9].

HOI detects human and object instances and infers inter-
actions between every pair of the detected instances, pro-
ducing ⟨human, object, interaction⟩ triplets. As the most

Figure 1. The imbalance of the frequency of 50 relation classes in
training (blue) and validation (orange) datasets.



frequent object ”person” appears in more than 20% of im-
ages in this project, the knowledge of human-object relation
is pivotal for the relation classification. SOTA HOI mod-
els include Graph Parsing Neural Network and Multi-task
Human-Centric Network [1].

VQA systems take an image and a free-form, open-
ended, natural-language question about the image as the in-
put, and then produce a natural-language answer as the out-
put [3]. Compared to SSG and HOI, VQA requires learn-
ing broader knowledge of image semantics such as location,
time, quantity, and reasoning. We can formulate questions
like ”Is this person driving a car?”, ”Where is the person?”,
and ”What is the person doing?” for VQA systems to pre-
dict the salient relations in the image. SOTA VQA systems
are such as BEiT-3 [7] and OFA [6].

3. Supervised Approach
The project begins by optimizing the baseline ResNet50

model with pre-trained weights in a supervised learning ap-
proach. Given the balanced training dataset, optimization
is carried out to reduce training loss as much as possible.
The same tuning is also performed for Swin Base Trans-
former (Swin B), which demonstrated better performance
than ResNet50 and ResNet101.

The regularization is used to reduce the validation loss
for better generalization capability. Fig. 2 shows the ap-
proximate mR improvement from applying optimization
and regularization techniques sequentially from left to right.

Lastly, multi-task learning is explored, which aims to im-
prove relation classification performance by learning to cor-
rectly detect objects or segment the image simultaneously.

3.1. Optimization: Lowering Train Loss

The initial image re-sizing dimension 1333 × 800 is
first reduced to fit the computer’s memory constraint. To
leverage the transfer learning from the ImageNet1K dataset,
the ResNet50 is customized with a 50-class classifier and
then initialized with pre-trained weights. When pre-trained
weights are used, input images are automatically re-sized to
232× 232 and then cropped to 224× 224.

The data whitening is carried out to speed up the
convergence and improve the optimization. As the
training set statistics (mean [0.495, 0.493, 0.491], std
[0.320, 0.319, 0.320]) is close to the ImageNet statis-
tics (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225]),
channel-wise normalization based on both statistics im-
prove the model recall significantly. Due to the pre-trained
weights used in model initialization, the ImageNet statistics
outperformed the training set statistics slightly. The mR was
significantly improved from 7% to 16%.

Although a small batch size might lead to effective op-
timization, it fails to utilize parallel computing and pro-
duce terrible statistics for BN. The experiments on batch

size 16 and 32 did not show apparent performance degra-
dation when applying the larger value. To maximize the
parallelism, batch size 32 was used in most experiments.

The learning rate (LR) is one of the most important pa-
rameters. The over-valued LR implies a large step toward
the minimum loss, which could lead to jumping over the
minimum and high training loss. The baseline LR 1e-3 was
found over-valued because the decrease in training loss was
too fast and the recall was not improved. The under-valued
LR, such as 1e-5 as in Fig. 5a, leads to slow convergence
and stagnates in the local minimum, which could also re-
sult in high training loss. The optimal value was found
around 7e-5. A gradually decreasing LR makes the balance
between the convergence speed and training loss. Besides
the default cosine scheduler, the step scheduler, and cosine
schedulers with warm-ups and restarts were tested. But no
significant improvement was obtained, and the plain cosine
scheduler was kept with the minimum rate tuned.

Two optimizers have been investigated in the project:
SGD and Adam. Momentum is a key technique in SGD,
which smooths out variations of the gradient and fastens
convergence as found in Fig. 5b. In this case, a higher
momentum is preferred because of the lower training loss
and testing loss before the model becomes over-confident.
Calibration such as label smoothing could be of use to re-
duce the testing loss rebound. As an excellent alternative
to SGD optimizer, Adam adaptively scales the gradients
and helps to reduce overshoots and stagnates. After exper-
iments, Adma is more effective than SGD in the Swin B
model while SGD performs better in the ResNet Models.

To enhance the ability to detect infrequent relations for
higher recall value, apart from data balancing, the weights
wn of infrequent classes’ binary cross-entropy (BCE) loss
are increased to be higher than those of frequent classes’
BCE loss in Eq. (1), and the predicted probability pn of
infrequent classes is enlarged by a multiplier m (e.g., 1.2)
before the ranking for selecting top 3 classes. Thus, the
chance of outputting infrequent classes is elevated, which
benefits the mR performance.

ℓ(ŷ, y) =

N∑
n=1

−wn[yn · logŷn+(1−yn) · log(1− ŷn)] (1)

pn =

{
mŷn, if n is an infrequent relation class
ŷn, otherwise

(2)

3.2. Regularization: Lowering Test Loss

The model tends to be overfitted after optimization as it
is specialized even capturing the noise in the training dataset
and lacks generalization capability. The testing loss re-
bound is observed in most experiments. The regularization
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Figure 2. Performance improvement (mR) by sequentially applying optimization and regularization techniques.

techniques are introduced to discourage learning a more
complex model, so as to avoid the risk of overfitting, includ-
ing L1/L2 regularization, weight decay, batch normalization
(BN), and data augmentation.

L1 regularization adds an L1 penalty (i.e., L1 norm of
weights) to the BCE loss, which punishes the increase in
model complexity. As observed in ResNet50 as Fig. 5c, the
training loss is increased due to L1 regularization, and the
testing loss is indeed reduced by introducing L1 norm. Sim-
ilarly, L2 regularization adds an L2 norm of weights to the
loss, which mathematically has the same effect as weight
decay. A comparison between training with weight decay
and without weight decay is demonstrated in Fig. 5d. Both
training and testing loss reduction are observed as expected.

An over-valued l1 penalty or weight decay rate (e.g.,
0.01) constrains the model complexity so that the model
fails to learn complex features and has a high training er-
ror. The mR improvement from L1/L2 regularization is not
significant based on experiment results.

BN has been widely used in convolutional layers and lin-
ear layers of models, which stabilizes the learning and im-
proves the network’s generalization properties. Image aug-
mentation such as random flipping, color jetting, and crop-
ping also helps to prevent the model from overfitting to the
training dataset.

After obtaining the best combination of hyperparameters
and before submitting to the test dataset, the model is re-
trained in the union of training and validation datasets after
image balancing to leverage all labeled data available. As
Fig. 2 illustrated, the model performance dropped by 2.5%
when testing with unseen images, which was offset by re-
training with images from both training and validation sets.

3.3. Multi-task Learning

Logically, people first identify objects in the image and
then deduce relations based on objects’ location, shape,
size, intrinsic correlation, etc. Based on this intuition, the
relation classification can be regarded as a high-level task.
And low-level tasks such as classifying objects, detecting
appearance and location, and learning pair-wise correlation
are supposed to contribute to the high-level task. This ex-
plains the principle behind multi-task learning. As we in-
ject more knowledge into the model by providing detec-
tion/segmentation annotations, better accuracy is expected
from multi-task learning.

3.3.1 Relation classification and segmentation

Semantic segmentation contains fine-grained pixel informa-
tion about object class, location, shape, size, and so on. To
leverage this image information, I connected an auxiliary
relation classifier to the latent features in the DeeplabV3
model as Fig. 3. Google DeeplabV3 is one of SOTA im-
age segmentation models, which employs atrous convolu-
tion with upsampled filters to extract dense feature maps
and to capture long-range context [2].

Fine-tuning multi-task learning models is more compli-
cated because contributions from two tasks need to be well-
balanced. The cross-entropy loss or dice loss for segmen-
tation is naturally much larger than BCE loss for relation
classification since the former is calculated for all pixels
and all object classes while the latter is only computed for
all relation classes. From experiments in Tab. 1, segmen-
tation loss needs to be reduced to a similar magnitude with
classification loss otherwise the classification performance
deteriorates.

To verify the learning progress of the multi-task learn-
ing model, model predictions and testing metrics are visual-
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Figure 3. DeeplabV3 based multi-task learning architecture: rela-
tion classification and segmentation.

λseg Lseg/Lcls IOU Accuracy mR

4e-10 1.8 0.53 0.995 30.3%
1e-8 40.9 0.52 0.995 25.8%

Table 1. Experiment on the weight of segmentation loss. (Lseg

segmentation loss, Lcls classification loss)

ized in Fig. 4. It was observed that the predicted segmenta-
tion mask was gradually becoming close to the ground truth
mask during the training. Meanwhile, segmentation met-
rics, e.g., accuracy, recall, and IOU, and the mR of relation
classification were improved altogether.

Although both classification and segmentation perfor-
mance are improved during the training, the mR of the
multi-task model has not outperformed the supervised
model at around 30%. More time and effort will be needed
for the architecture adjustment and subtle fine-tuning to fur-
ther improve IOU and mR.

3.3.2 Relation classification, segmentation and object
detection

The success of combining classification and segmentation
motivates the further exploration of combining tasks of clas-
sification, segmentation, and object detection. Although ob-
ject detection provides similar information to segmentation,
the existence of object detection is expected to facilitate and
ease task solving. The Mask R-CNN model is a suitable
basis that already produces segmentation and classes with
bounding boxes. A new head for relation classification can
be added to the Mask R-CNN model as Fig. 6. Due to the
limited data, the main feature extraction network could be
fixed during the re-training. Seesaw loss could be beneficial
to solve the long-tail issue of the class labels [5]. Due to the
time limit, this idea has not been implemented.

4. Zero-shot Approach
Zero-shot learning can provide different solutions to

solve this relation classification problem with the help of
language without seeing the images provided.

4.1. CLIP

OpenAI CLIP, consisting of an image encoder and a text
encoder, is trained on 400 million image-text pairs for pre-
dicting the level of alignment between the image and the
text description [4]. To use CLIP for classification, prompt
engineering is the key. The following strategies are tested:

(a) Relation-focused: Raw relations are kept and the tem-
plate is ”relation of {relation}”. Validation mR is
30.5%.

(b) Action-focused: Raw relations are modified to empha-
size the action, e.g., from ”playing with” to ”playing”.
The template is ”action of {modified relation}”. While
the validation mR is 34.2%, the test mR is 28.7%. The
robustness of this kind of method is questionable con-
sidering such a big performance drop.

4.2. Detectron and CLIP

Experiments have been done to check if adding objects
to the prompt can improve performance. Detectron2 [8] is
used to detect the instances firstly. Candidate texts are gen-
erated by one or two instances detected and each relation
from the PSG predicate list (Fig. 7). Using CLIP, candi-
date texts are ordered by the predicted alignment value with
the image. However, the validation result shows that mR
is 20.3% lower than previous results. As the instance detec-
tion by Detectron2 was verified as accurate, the error mainly
comes from the CLIP.

Supervised methods still outperform. Supplementary
texts about relations and continual learning will be needed
to enhance the CLIP model’s performance for this project.

5. Conclusion
Label imbalance is the most severe issue in the given

datasets. Under-sampling and over-sampling are utilized
to create a more balanced training dataset. ResNet50,
ResNet101, and Swin B models have been optimized and
regularized for the highest mR. Models are re-trained by
training and validation images before testing. Multi-task
learning models and zero-shot models have been proposed
and explored preliminarily. The optimized Swin B model
has the highest mR of 32.4% currently.
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Figure 5. Optimization and regularization training logs. (Training loss: solid lines, Validation loss: dashed lines)
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Figure 6. Mask-RCNN based multi-task learning architecture: relation classification, instance segmentation, and object detection.
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