

Project Title: Protein Function Prediction from Sequential Data
CE7412:	Computational	and	Systems	Biology	by	Professor	Jagath	Rajapakse	

Keywords: Protein Function Prediction, Sequence Model, Multi-label Classification

1 INTRODUCTION

Protein function prediction is a key area of research in bioinformatics that involves the use of computational methods to
predict the biological functions of proteins. It is an important field because understanding the function of proteins is
essential for understanding cellular processes and disease mechanisms, as well as for the development of new drugs and
therapies. There are multiple approaches to predict protein functions, such as using sequence-based features, protein-
protein interaction networks, protein structures, and biomedical literature. Among them, the protein’s amino acid sequence
is the most available information for most proteins. Therefore, methods that can precisely forecast protein functions solely
based on sequence could be the most comprehensive and widely applicable to proteins that lack extensive research.
Conventional techniques aim to identify comparable sequences that possess known functional annotations and distinct
sequence motifs linked with specific functions. Recent machine learning methods demonstrate more advantages in
scalability for handling large-scale problems, automated feature extraction without the need for human knowledge,
robustness for noisy data, and adaptability for different datasets. DeepGO [1] is one of the first deep learning models which
can predict protein functions using the protein amino acid sequence and interaction networks. However, DeepGO has
several restrictions on the sequence length, missing features and number of predicted classes. DeepGOPlus [2] has been
proposed to overcome these issues, which is based on Convolutional Neural Network (CNN) using multiple 1D
convolution layers. However, based on what has been found in the field of Natural Language Processing (NLP), CNNs
are not the most effective model handling sequential data. Models like Recurrent Neural Network (RNN), Long-Term-
Short-Memory (LSTM), and transformer demonstrate more promising performance than CNNs for sequential data.
Therefore, this project aims to benchmark advanced sequence learning models as mentioned and their hybrid architectures
against DeepGOPlus. Performance metrics like F-score, semantic distance, and precision-recall area are compared among
various models using CAFA3 [3] and SwissProt [4] datasets. Their advantages and disadvantages are analyzed at the end
of the report.

2

2 DATASETS

CAFA3 (Critical Assessment of Function Annotation) is a dataset used for the third edition of the CAFA challenge, a
biennial competition that evaluates computational methods for predicting protein function. In this project, we used
annotations published in September 2016 and tested benchmark published on November 15, 2017.

The CAFA3 dataset consists of protein sequences from 18 model organisms, including humans, mice, yeast, and fruit
flies. For each protein, a set of annotations representing the known molecular functions, biological processes, and cellular
components are provided. The dataset also includes experimental data, such as protein-protein interactions and gene
expression profiles, which can be used to improve the accuracy of function prediction methods.

Following the preprocessing steps of DeepGOPLus, we propagate the annotations using the hierarchical structure of
the Gene Ontology, June 1, 2016 version, which consists of 10,693 molecular functions, 4,034 cellular components, and
29,264 biological processes. We consider all types of relations between classes, after which, we count the number of
annoated proteins for each GO class and filter classes with less than 50 annotations.

For SwissProt, experimental annotations before Janurary 2016 are used as training set and those between Janurary 2016
and October 2016 were used for testing. To prevent data leakage during training, we remove from the testing set 23 target
classes that are used in CAFA3 evaluation set.

The final training data consists of 75,495 proteins. This is further split into training and validation sets using a ratio of
9:1. The testing set consists of 3,974 data points. There are 5,828 classes in total. Top 20 classes are shown in Figure 1.

Figure 1: Top 20 most frequent GO terms

Each protein is associated with multiple GO terms. Hence, this is a multi-label classification problem. We obtain the
number of classes for each protein and plot the histogram in Figure 2.

3

Figure 2: Distribution of number of classes per protein

3 METHODS

3.1 Benchmark Models

In function prediction from protein sequence, each protein is associated with multiple GO terms simultaneously. The goal
is to predict the set of labels, i.e., GO terms, that best describes each protein. Traditional methods search for similar
sequences with known functional annotations and specific sequence motifs associated with some function. Recent machine
learning methods demonstrate more advantages in scalability for handling large-scale problems, automated feature
extraction without the need for human knowledge, robustness for noisy data, and adaptability for different datasets.
Therefore, we are interested in investigating the performance of various advanced machine learning models and their
hybrid architectures in the protein function prediction problem. The benchmarking models are as follows:

1. Convolutional Neural network (CNN): CNN is well-known for solving tasks involving spatial information,
such as image classification and object detection. It can automatically learn local feature representations and
hierarchies of features, which can capture complex patterns in the input data. DeepGOPlus is based on CNN
models using 1D convolution with 512 filters and 16 kinds of lengths for each filter as feature extraction.

4

Figure 3: DeepGOPlus model architecture [2]

2. Recurrent neural network (RNN): RNN is more popular than CNN in natural language processing as it can
capture sequential information from data, process inputs with varying lengths, and generate variable-length
outputs. The findings might also apply to protein sequences.

Figure 4: RNN model architecture

3. Long short-term memory (LSTM): LSTM solves the gradient vanishing and explosion problem in modelling
long sequences. It selectively retains or discards information using gating mechanisms, which allows them to
learn from both short-term and long-term patterns in the input data.

Figure 5: LSTM cell architecture

5

4. Transformer: Transformer models have shown state-of-the-art performance on various sequence modeling
tasks. They can capture global dependencies in the input data using self-attention mechanisms, which allows
them to process sequences of varying lengths in parallel and capture long-term dependencies more effectively.
Transformer models are recently invented deemed as a successor of RNNs. The promising computation
efficiency and performance make it a dominant technique in many fields like natural language processing and
computer vision.

Figure 6: Transformer architecture

5. Hybrid models: One way to leverage different advantages of different machine learning models is to hybrid the
model architecture. In this study, we combine CNN and RNN layers in sequence as one mother and in parallel
as another model. We aim to see if such hybrid model could inherit the capability of extracting spatial information
from CNN and extracting temporal information from RNN.

Figure 7: Hybrid CNN+RNN architecture (left: in sequnce, right: in parallel)

6

3.2 Evaluation

As mentioned, protein function prediction in this study is a multi-label classification problem. Each sample, i.e., protein
sequence, has multiple ontology labels, including MFO, BPO, and CCO. To evaluate the classification performance, three
evaluation metrics have been proposed: 𝐹!"#, 𝑆!$%, [3] and AUPR [2].

𝐹!"# is the maximum F score over all prediction thresholds 𝑡, which is the harmonic mean of the average precision
𝐴𝑣𝑔𝑃𝑟(𝑡) and average recall 𝐴𝑣𝑔𝑅𝑐(𝑡) among proteins. The average precision and recall are defined as followings:

𝐴𝑣𝑔𝑃𝑟(𝑡) =
1

𝑚(𝑡)	1
∑ 𝐼(𝑓 ∈ 𝑃$(𝑡)⋀𝑓 ∈ 𝑇$)&

∑ 𝐼(𝑓 ∈ 𝑃$(𝑡))&

!(()

$*+

𝐴𝑣𝑔𝑅𝑐(𝑡) =
1
𝑛	1

∑ 𝐼(𝑓 ∈ 𝑃$(𝑡)⋀𝑓 ∈ 𝑇$)&

∑ 𝐼(𝑓 ∈ 𝑇$)&

%

$*+

where 𝑓 is a GO class, 𝑇$ is the set of ground truth labels, 𝑃$(𝑡) is the predicted classes for the protein 𝑖 at the threshold 𝑡,
𝑚(𝑡) is the number of proteins that have no less than one class, 𝑛 denotes the total protein number, 𝐼(⋅) is the Boolean
function that returns 1 when the condition is satisfied. Prediction thresholds are set with 0.01 intervals, 𝑡 ∈ [0, 1].

𝑆!$% is the minimum semantic distance between ground truth and predictions over all prediction thresholds 𝑡 based on
the class information content	 𝐼𝐶(𝑐) . It is the Euclidean norm of the average uncertainty 𝑟𝑢(𝑡) and the average
misinformation 𝑚𝑖(𝑡). They are defined as followings:

𝐼𝐶(𝑐) = −log	(Pr	(𝑐|𝑃(𝑐))

𝑟𝑢(𝑡) =
1
𝑛1 1 𝐼𝐶(𝑐)

,∈.!/0!(()

%

$*+

𝑚𝑖(𝑡) =
1
𝑛1 1 𝐼𝐶(𝑐)

,∈0!(()/.!

%

$*+

where 𝑐 is a GO class, 𝑃(𝑐) is the set of parent classes of 𝑐, 𝑃𝑟(⋅) function returns the conditional probability.

AUPR is the area under the precision-recall curve, which presents the overall model performance under different
thresholds unlike the previous metrics focus on the threshold with the best performance.

In the study, the complete GO ontology is considered when computing parent child classes. As GO classes in one sub-
ontology (MFO, BOP or CCO) may have relations with classes in other sub-ontology, the GO classes are defined first then
separated into three sub-ontologies. For example, the MFO acyl carrier activity (GO: 0000036) has a ‘part-of’ relation with
the BPO fatty acid biosynthetic process (GO: 0006633). This kind of situation has been taken into account when computing
evaluation metrics while CAFA3 does not.

7

4 EXPERIMENT AND RESULTS

4.1 Experiment setup

For the CNN (Baseline) method, we used a simple architecture following the paper.

For the RNN method, we used 4 parallel 2-layer GRU architectures with (256,256) hidden units. Next, all outputs from
GRU modules will be concatenated before being fed into the Dense layer to get the prediction.

For the RNN+CNN method, we used a hybrid architecture consisting of 2 convolutional layers followed by 2-layer
GRU modules.

For the RNN+CNN parallel method, we used a similar architecture as CNN (Baseline) and RNN but much smaller. The
output from CNN and RNN will then be concatenated before being fed into the Dense layer to obtain the prediction.

For the LSTM method, we used 8 parallel 3-layer LSTM architectures with (512,256,128) hidden units.

For the Transformer method, we used the multi-head self-attention mechanism. The model had 4 attention heads and a
feed-forward dimension of 64.

We trained these models for 12 epochs with a batch size of 32 and used the Adam optimizer with a learning rate of
0.0003. We used a total of 4 GPUs NVIDIA GeForce RTX 3090 for this project.

4.2 Results

Table 1: Comparison of performance using various model architectures

Method
 𝐹!"#↑ 𝑆!$%↓ AUPR ↑

MFO BPO CCO MFO BPO CCO MFO BPO CCO

CNN (Baseline)
params (59.5m)

0.544 0.469 0.623 8.724 22.573 7.823 0.487 0.404 0.627

RNN
params (11,6m)

0.557 0.476 0.624 8.626 22.692 7.837 0.480 0.408 0.628

CNN+RNN parallel
params (19,1m)

0.558 0.488 0.625 8.610 22.433 7.782 0.491 0.419 0.627

CNN+RNN
params (15,9m)

0.552 0.472 0.625 8.606 22.469 7.764 0.489 0.422 0.629

LSTM
params (22,6m)

0.560 0.485 0.625 8.592 22.343 7.716 0.511 0.428 0.631

Transformer
params (244,8m)

0.497 0.436 0.617 8.966 23.259 7.933 0.443 0.371 0.622

Tuning

LSTM 1
params (45,1m)

0.565 0.487 0.626 8.588 22.250 7.708 0.515 0.432 0.635

LSTM 2
params (26,8m)

0.557 0.475 0.617 8..600 22.457 7.779 0.526 0.406 0.628

8

Method
 𝐹!"#↑ 𝑆!$%↓ AUPR ↑

MFO BPO CCO MFO BPO CCO MFO BPO CCO

Transformer 1
params (244.8m)

0.502 0.442 0.620 8.823 23.152 7.876 0.443 0.376 0.627

Transformer 2
params (120.2m)

0.492 0.426 0.598 9.063 24.216 8.144 0.437 0.359 0.609

Transformer 3
params (120.2m)

0.485 0.427 0.598 9.323 23.907 8.024 0.442 0.367 0.612

Table 1 reports the experimental results obtained from various model architectures. Best performances are in bold.
We find that RNN outperformed CNN in 𝐹!"# and achieved comparable performance in 𝑆!$% and AUPR.
With the hybrid architecture of CNN+RNN, the model was able to perform better than the CNN baseline. As for the 2

variants, CNN+RNN parallel, with more parameters than CNN+RNN, achieved higher 𝐹!"#, comparable 𝑆!$% and AUPR.
LSTM obtained the best performance among all methods. This shows that LSTM’s ability to selectively remember or

forget information makes it more effective at learning longer sequences.
Our transformer did not perform as well as the baseline and other methods. We speculate it caused by the large memory

requirements for storing positional information of long protein sequences.

5 DISCUSSION AND CONCLUSION

5.1 Time complexity

Table 2: Epoch training time and number of parameters of models

Method Training time (second per epoch) Number of params
CNN (Baseline) 666s 59.5m
RNN 937s 11.6m
CNN+RNN parallel 1004s 19.1m
CNN+RNN 148s 15.9m
LSTM 6187s 22.6m
Transformer 223s 244.8m

The table provides information about the time required to train various machine learning models, including their method,

training time per epoch, and the number of parameters. Based on this information, we can draw several observations and
insights.

First, the table shows that different machine learning methods have different training times and require different
numbers of parameters. For example, the CNN (Baseline) method has the shortest training time per epoch (666 seconds),
while the LSTM method has the longest training time per epoch (6187 seconds). Similarly, the Transformer method
requires the highest number of parameters (244.8 million), while the RNN method requires the lowest number of

9

parameters (11.6 million). Notably, although the Transformer has much more trainable parameters than others, its training
time is in the low range (223 seconds). It shows the advantage of parallel computing computation in the Transformer model,
since 4 GPUs are used in the experiment. In RNN, the output at each time step depends on the output of the previous time
step, making it difficult to parallelize the computations across multiple GPUs.

Second, we can observe that combining different machine learning methods can lead to different trade-offs in terms of
training time and the number of parameters. For instance, the CNN+RNN parallel method has a relatively long training
time per epoch (1004 seconds) compared to the CNN+RNN method (148 seconds). However, the former requires fewer
parameters (19.1 million) than the latter (15.9 million).

5.2 Model fine-tuning on LSTM and Transformers

To study the impact of different configurations on the performance of LSTM and Transformer models, we conducted an
ablation study, with results summarised in Table 1. Specifically, we varied the number of hidden units and the number of
layers in each LSTM model and the different numbers of heads and hidden dims in Transformers.

For the LSTM model, we varied the number of layers from 3 to 4 and the number of LSTM from 8 to 16. We trained
and evaluated each configuration on the same dataset. We also used the Adam optimizer with a learning rate of 0.0003 and
trained each model for 12 epochs with a batch size of 32.

For the Transformer model, we varied the number of attention heads from 4 to 8 and the hidden dim from 64 to 32. We
trained and evaluated each configuration on the same dataset using the same hyperparameters as the LSTM model.

Our results showed that increasing the number of layers and the number of LSTM improved the performance of the
LSTM model. However, the Transformer models do not provide any significant performance improvement. Our results
showed that decreasing the number of attention heads and layers also decreases the performance of the Transformer model.

5.3 Future work

We have investigated advanced sequence models for protein function prediction including CNN, RNN, LSTM,
Transformer, and hybrid variants. It is observed that these advanced model architectures indeed improve the performance
(𝐹!"#, 𝑆!$%, and AUPR) to different extents, and model hyperparameters are critical to obtain the best performance. More
sophisticated models could be tested such as bi-directional RNN and hierarchical transformers in the future. To handle
longer sequences more efficiently, several modifications of Transformer such as Longformer [5] and Big Bird [6] have
been proposed. We could make use of techniques like sparse attention mechanisms and sliding window approaches to
reduce the memory requirements of the models. As the performance improvement has been seen in the hybrid architectures,
we could further study the ensemble methods considering more models and architectures. Last but not least, transfer
learning becomes more and more prevalent, we could explore the effectiveness of pre-training model in other datasets and
fine-tuning in the target dataset like BERT. The large language models like GPT [7] are extremely powerful with universal
intelligence, which could also provide knowledge or capability for protein function prediction, e.g., through in-context
learning.

10

REFERENCES

[1] Kulmanov M, Khan M A, Hoehndorf R. DeepGO: predicting protein functions from sequence and interactions
using a deep ontology-aware classifier[J]. Bioinformatics, 2018, 34(4): 660-668.

[2] Kulmanov M, Hoehndorf R. DeepGOPlus: improved protein function prediction from sequence[J].
Bioinformatics, 2020, 36(2): 422-429.

[3] Zhou N, Jiang Y, Bergquist T R, et al. The CAFA challenge reports improved protein function prediction and
new functional annotations for hundreds of genes through experimental screens[J]. Genome biology, 2019,
20(1): 1-23.

[4] EMBL-EBI (European Bioinformations Institute). http://www.ebi.ac.uk/swissprot/. Retrieved in April 2023.
[5] Beltagy I, Peters M E, Cohan A. Longformer: The long-document transformer[J]. arXiv preprint

arXiv:2004.05150, 2020.
[6] Zaheer M, Guruganesh G, Dubey K A, et al. Big bird: Transformers for longer sequences[J]. Advances in neural

information processing systems, 2020, 33: 17283-17297.
[7] Floridi L, Chiriatti M. GPT-3: Its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30:

681-694.

