
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Project Title: Protein Function Prediction from Sequential Data 
CE7412:	Computational	and	Systems	Biology	by	Professor	Jagath	Rajapakse	

 

 

 

Keywords: Protein Function Prediction, Sequence Model, Multi-label Classification 

1 INTRODUCTION 

Protein function prediction is a key area of research in bioinformatics that involves the use of computational methods to 
predict the biological functions of proteins. It is an important field because understanding the function of proteins is 
essential for understanding cellular processes and disease mechanisms, as well as for the development of new drugs and 
therapies. There are multiple approaches to predict protein functions, such as using sequence-based features, protein-
protein interaction networks, protein structures, and biomedical literature. Among them, the protein’s amino acid sequence 
is the most available information for most proteins. Therefore, methods that can precisely forecast protein functions solely 
based on sequence could be the most comprehensive and widely applicable to proteins that lack extensive research. 
Conventional techniques aim to identify comparable sequences that possess known functional annotations and distinct 
sequence motifs linked with specific functions. Recent machine learning methods demonstrate more advantages in 
scalability for handling large-scale problems, automated feature extraction without the need for human knowledge, 
robustness for noisy data, and adaptability for different datasets. DeepGO [1] is one of the first deep learning models which 
can predict protein functions using the protein amino acid sequence and interaction networks. However, DeepGO has 
several restrictions on the sequence length, missing features and number of predicted classes. DeepGOPlus [2] has been 
proposed to overcome these issues, which is based on Convolutional Neural Network (CNN) using multiple 1D 
convolution layers.  However, based on what has been found in the field of Natural Language Processing (NLP), CNNs 
are not the most effective model handling sequential data. Models like Recurrent Neural Network (RNN), Long-Term-
Short-Memory (LSTM), and transformer demonstrate more promising performance than CNNs for sequential data. 
Therefore, this project aims to benchmark advanced sequence learning models as mentioned and their hybrid architectures 
against DeepGOPlus. Performance metrics like F-score, semantic distance, and precision-recall area are compared among 
various models using CAFA3 [3] and SwissProt [4] datasets. Their advantages and disadvantages are analyzed at the end 
of the report. 
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2 DATASETS 

CAFA3 (Critical Assessment of Function Annotation) is a dataset used for the third edition of the CAFA challenge, a 
biennial competition that evaluates computational methods for predicting protein function. In this project, we used 
annotations published in September 2016 and tested benchmark published on November 15, 2017. 

The CAFA3 dataset consists of protein sequences from 18 model organisms, including humans, mice, yeast, and fruit 
flies. For each protein, a set of annotations representing the known molecular functions, biological processes, and cellular 
components are provided. The dataset also includes experimental data, such as protein-protein interactions and gene 
expression profiles, which can be used to improve the accuracy of function prediction methods. 

Following the preprocessing steps of DeepGOPLus, we propagate the annotations using the hierarchical structure of 
the Gene Ontology, June 1, 2016 version, which consists of 10,693 molecular functions, 4,034 cellular components, and 
29,264 biological processes. We consider all types of relations between classes, after which, we count the number of 
annoated proteins for each GO class and filter classes with less than 50 annotations. 

For SwissProt, experimental annotations before Janurary 2016 are used as training set and those between Janurary 2016 
and October 2016 were used for testing. To prevent data leakage during training, we remove from the testing set 23 target 
classes that are used in CAFA3 evaluation set. 

The final training data consists of 75,495 proteins. This is further split into training and validation sets using a ratio of 
9:1. The testing set consists of 3,974 data points. There are 5,828 classes in total. Top 20 classes are shown in Figure 1. 

 

Figure 1: Top 20 most frequent GO terms 

Each protein is associated with multiple GO terms. Hence, this is a multi-label classification problem. We obtain the 
number of classes for each protein and plot the histogram in Figure 2. 
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Figure 2: Distribution of number of classes per protein 

3 METHODS 

3.1 Benchmark Models 

In function prediction from protein sequence, each protein is associated with multiple GO terms simultaneously. The goal 
is to predict the set of labels, i.e., GO terms, that best describes each protein. Traditional methods search for similar 
sequences with known functional annotations and specific sequence motifs associated with some function. Recent machine 
learning methods demonstrate more advantages in scalability for handling large-scale problems, automated feature 
extraction without the need for human knowledge, robustness for noisy data, and adaptability for different datasets. 
Therefore, we are interested in investigating the performance of various advanced machine learning models and their 
hybrid architectures in the protein function prediction problem. The benchmarking models are as follows: 

1. Convolutional Neural network (CNN): CNN is well-known for solving tasks involving spatial information, 
such as image classification and object detection. It can automatically learn local feature representations and 
hierarchies of features, which can capture complex patterns in the input data. DeepGOPlus is based on CNN 
models using 1D convolution with 512 filters and 16 kinds of lengths for each filter as feature extraction.  
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Figure 3: DeepGOPlus model architecture [2] 

2. Recurrent neural network (RNN): RNN is more popular than CNN in natural language processing as it can 
capture sequential information from data, process inputs with varying lengths, and generate variable-length 
outputs. The findings might also apply to protein sequences. 

 
Figure 4: RNN model architecture 

3. Long short-term memory (LSTM): LSTM solves the gradient vanishing and explosion problem in modelling 
long sequences. It selectively retains or discards information using gating mechanisms, which allows them to 
learn from both short-term and long-term patterns in the input data. 

 
Figure 5: LSTM cell architecture 
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4. Transformer: Transformer models have shown state-of-the-art performance on various sequence modeling 
tasks. They can capture global dependencies in the input data using self-attention mechanisms, which allows 
them to process sequences of varying lengths in parallel and capture long-term dependencies more effectively. 
Transformer models are recently invented deemed as a successor of RNNs. The promising computation 
efficiency and performance make it a dominant technique in many fields like natural language processing and 
computer vision.  

 

Figure 6: Transformer architecture 

5. Hybrid models: One way to leverage different advantages of different machine learning models is to hybrid the 
model architecture. In this study, we combine CNN and RNN layers in sequence as one mother and in parallel 
as another model. We aim to see if such hybrid model could inherit the capability of extracting spatial information 
from CNN and extracting temporal information from RNN. 

 

  

Figure 7: Hybrid CNN+RNN architecture (left: in sequnce, right: in parallel) 
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3.2 Evaluation 

As mentioned, protein function prediction in this study is a multi-label classification problem. Each sample, i.e., protein 
sequence, has multiple ontology labels, including MFO, BPO, and CCO. To evaluate the classification performance, three 
evaluation metrics have been proposed: 𝐹!"#,  𝑆!$%, [3] and AUPR [2].  

𝐹!"# is the maximum F score over all prediction thresholds 𝑡, which is the harmonic mean of the average precision 
𝐴𝑣𝑔𝑃𝑟(𝑡) and average recall 𝐴𝑣𝑔𝑅𝑐(𝑡) among proteins. The average precision and recall are defined as followings: 
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1
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where 𝑓 is a GO class, 𝑇$ is the set of ground truth labels, 𝑃$(𝑡) is the predicted classes for the protein 𝑖 at the threshold 𝑡, 
𝑚(𝑡) is the number of proteins that have no less than one class, 𝑛 denotes the total protein number, 𝐼(⋅) is the Boolean 
function that returns 1 when the condition is satisfied. Prediction thresholds are set with 0.01 intervals, 𝑡 ∈ [0, 1].  

𝑆!$% is the minimum semantic distance between ground truth and predictions over all prediction thresholds 𝑡 based on 
the class information content	 𝐼𝐶(𝑐) . It is the Euclidean norm of the average uncertainty 𝑟𝑢(𝑡)  and the average 
misinformation 𝑚𝑖(𝑡). They are defined as followings: 

 

𝐼𝐶(𝑐) = −log	(Pr	(𝑐|𝑃(𝑐)) 
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where 𝑐 is a GO class, 𝑃(𝑐) is the set of parent classes of 𝑐, 𝑃𝑟(⋅) function returns the conditional probability. 

AUPR is the area under the precision-recall curve, which presents the overall model performance under different 
thresholds unlike the previous metrics focus on the threshold with the best performance.  

In the study, the complete GO ontology is considered when computing parent child classes. As GO classes in one sub-
ontology (MFO, BOP or CCO) may have relations with classes in other sub-ontology, the GO classes are defined first then 
separated into three sub-ontologies. For example, the MFO acyl carrier activity (GO: 0000036) has a ‘part-of’ relation with 
the BPO fatty acid biosynthetic process (GO: 0006633). This kind of situation has been taken into account when computing 
evaluation metrics while CAFA3 does not.  
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4 EXPERIMENT AND RESULTS 

4.1 Experiment setup 

For the CNN (Baseline) method, we used a simple architecture following the paper. 

For the RNN method, we used 4 parallel 2-layer GRU architectures with (256,256) hidden units. Next, all outputs from 
GRU modules will be concatenated before being fed into the Dense layer to get the prediction. 

For the RNN+CNN method, we used a hybrid architecture consisting of 2 convolutional layers followed by 2-layer 
GRU modules.  

For the RNN+CNN parallel method, we used a similar architecture as CNN (Baseline) and RNN but much smaller. The 
output from CNN and RNN will then be concatenated before being fed into the Dense layer to obtain the prediction. 

For the LSTM method, we used 8 parallel 3-layer LSTM architectures with (512,256,128) hidden units. 

For the Transformer method, we used the multi-head self-attention mechanism. The model had 4 attention heads and a 
feed-forward dimension of 64.   

We trained these models for 12 epochs with a batch size of 32 and used the Adam optimizer with a learning rate of 
0.0003. We used a total of 4 GPUs NVIDIA GeForce RTX 3090 for this project. 

4.2 Results 

 
Table 1: Comparison of performance using various model architectures 

Method 
 𝐹!"#↑   𝑆!$%↓   AUPR ↑  

MFO BPO CCO MFO BPO CCO MFO BPO CCO 

CNN (Baseline)  
# params (59.5m) 

0.544 0.469 0.623 8.724 22.573 7.823 0.487 0.404 0.627 

RNN 
# params (11,6m) 

0.557 0.476 0.624 8.626 22.692 7.837 0.480 0.408 0.628 

CNN+RNN parallel 
# params (19,1m) 

0.558 0.488 0.625 8.610 22.433 7.782 0.491 0.419 0.627 

CNN+RNN 
# params (15,9m) 

0.552 0.472 0.625 8.606 22.469 7.764 0.489 0.422 0.629 

LSTM 
# params (22,6m) 

0.560 0.485 0.625 8.592 22.343 7.716 0.511 0.428 0.631 

Transformer 
# params (244,8m) 

0.497 0.436 0.617 8.966 23.259 7.933 0.443 0.371 0.622 

Tuning  

LSTM 1 
# params (45,1m) 

0.565 0.487 0.626 8.588 22.250 7.708 0.515 0.432 0.635 

LSTM 2 
# params (26,8m) 

0.557 0.475 0.617 8..600 22.457 7.779 0.526 0.406 0.628 
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Method 
 𝐹!"#↑   𝑆!$%↓   AUPR ↑  

MFO BPO CCO MFO BPO CCO MFO BPO CCO 

Transformer 1 
# params (244.8m) 

0.502 0.442 0.620 8.823 23.152 7.876 0.443 0.376 0.627 

Transformer 2 
# params (120.2m) 

0.492 0.426 0.598 9.063 24.216 8.144 0.437 0.359 0.609 

Transformer 3 
# params (120.2m) 

0.485 0.427 0.598 9.323 23.907 8.024 0.442 0.367 0.612 

 
Table 1 reports the experimental results obtained from various model architectures. Best performances are in bold.  
We find that RNN outperformed CNN in 𝐹!"# and achieved comparable performance in 𝑆!$% and AUPR. 
With the hybrid architecture of CNN+RNN, the model was able to perform better than the CNN baseline. As for the 2 

variants, CNN+RNN parallel, with more parameters than CNN+RNN, achieved higher 𝐹!"#, comparable 𝑆!$% and AUPR.  
LSTM obtained the best performance among all methods. This shows that LSTM’s ability to selectively remember or 

forget information makes it more effective at learning longer sequences. 
Our transformer did not perform as well as the baseline and other methods. We speculate it caused by the large memory 

requirements for storing positional information of long protein sequences. 

5 DISCUSSION AND CONCLUSION 

5.1 Time complexity 

 
Table 2: Epoch training time and number of parameters of models 

Method Training time (second per epoch) Number of params 
CNN (Baseline)  666s 59.5m 
RNN 937s 11.6m 
CNN+RNN parallel 1004s 19.1m 
CNN+RNN 148s 15.9m 
LSTM 6187s 22.6m 
Transformer 223s 244.8m 

 
The table provides information about the time required to train various machine learning models, including their method, 

training time per epoch, and the number of parameters. Based on this information, we can draw several observations and 
insights. 

First, the table shows that different machine learning methods have different training times and require different 
numbers of parameters. For example, the CNN (Baseline) method has the shortest training time per epoch (666 seconds), 
while the LSTM method has the longest training time per epoch (6187 seconds). Similarly, the Transformer method 
requires the highest number of parameters (244.8 million), while the RNN method requires the lowest number of 
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parameters (11.6 million). Notably, although the Transformer has much more trainable parameters than others, its training 
time is in the low range (223 seconds). It shows the advantage of parallel computing computation in the Transformer model, 
since 4 GPUs are used in the experiment. In RNN, the output at each time step depends on the output of the previous time 
step, making it difficult to parallelize the computations across multiple GPUs. 

Second, we can observe that combining different machine learning methods can lead to different trade-offs in terms of 
training time and the number of parameters. For instance, the CNN+RNN parallel method has a relatively long training 
time per epoch (1004 seconds) compared to the CNN+RNN method (148 seconds). However, the former requires fewer 
parameters (19.1 million) than the latter (15.9 million). 

5.2 Model fine-tuning on LSTM and Transformers 

To study the impact of different configurations on the performance of LSTM and Transformer models, we conducted an 
ablation study, with results summarised in Table 1. Specifically, we varied the number of hidden units and the number of 
layers in each LSTM model and the different numbers of heads and hidden dims in Transformers. 

For the LSTM model, we varied the number of layers from 3 to 4 and the number of LSTM from 8 to 16. We trained 
and evaluated each configuration on the same dataset. We also used the Adam optimizer with a learning rate of 0.0003 and 
trained each model for 12 epochs with a batch size of 32. 

For the Transformer model, we varied the number of attention heads from 4 to 8 and the hidden dim from 64 to 32. We 
trained and evaluated each configuration on the same dataset using the same hyperparameters as the LSTM model. 

Our results showed that increasing the number of layers and the number of LSTM improved the performance of the 
LSTM model. However, the Transformer models do not provide any significant performance improvement. Our results 
showed that decreasing the number of attention heads and layers also decreases the performance of the Transformer model. 

5.3 Future work 

We have investigated advanced sequence models for protein function prediction including CNN, RNN, LSTM, 
Transformer, and hybrid variants. It is observed that these advanced model architectures indeed improve the performance 
(𝐹!"#,  𝑆!$%, and AUPR) to different extents, and model hyperparameters are critical to obtain the best performance. More 
sophisticated models could be tested such as bi-directional RNN and hierarchical transformers in the future. To handle 
longer sequences more efficiently, several modifications of Transformer such as Longformer [5] and Big Bird [6] have 
been proposed. We could make use of techniques like sparse attention mechanisms and sliding window approaches to 
reduce the memory requirements of the models. As the performance improvement has been seen in the hybrid architectures, 
we could further study the ensemble methods considering more models and architectures. Last but not least, transfer 
learning becomes more and more prevalent, we could explore the effectiveness of pre-training model in other datasets and 
fine-tuning in the target dataset like BERT. The large language models like GPT [7] are extremely powerful with universal 
intelligence, which could also provide knowledge or capability for protein function prediction, e.g., through in-context 
learning. 
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