
Assignment 2: Seq2Seq Model for Machine Translation

Zhang Siyue
siyue001@ntu.edu.sg

1. Introduction

In this project, I re-implement various Sequence-to-
sequence models for the French-to-English language trans-
lation task. Data reprocessing is performed to prepare sen-
tence pairs, language vocabularies, train and test sets, and
input tensors. It includes steps such as normalizing texts,
word-to-index, filtering to sentences with 15 words max-
imum, filtering to sentences that translate to ”I am” or
”He is”, splitting the dataset by 90/10, etc. Special to-
kens are defined as <SOS token> for the sentence start,
<EOS token> for the sentence end, and <PAD token> for
word padding. In total, there are 21,527 sentence pairs, in-
cluding 6,845 unique French tokens and 4,496 unique En-
glish tokens.

Different model architectures have been implemented
and experimented with, which include Gated Recurrent
Unit (GRU) [1], Long Short-term Memory (LSTM) [2], Bi-
directional Long Short-Term Memory (bi-LSTM) [3], At-
tention Mechanism [4], and Transformer [4].

Due to the limited GPU resource, the model hidden size
is set to 256, the model layer is 1, the training epoch is
2, and the learning rate is 0.01 in most cases. The opti-
mizer is SGD by default. The loss function is negative log-
likelihood, which is suitable for the multi-class classifica-
tion problem. The teacher forcing ratio, the probability of
using the real target output as each next input instead of the
decoder’s prediction, is set to 0.5.

Rouge (Recall-Oriented Understudy for Gisting Evalua-
tion) scores [5] are used to evaluate the performance of ma-
chine translation. ROUGE scores are based on the compari-
son of n-gram overlap between the generated summary and
a set of reference summaries. They are reported by F-score,
accuracy, and recall. Rouge 1 represents 1-gram evaluation,
and Rouge 2 corresponds to 2-gram.

2. Model Implementation

Different architectures have been applied in the encoder
and decoder of Seq2Seq models as Fig. 1, which required
modifications on the baseline GRU-GRU model.

GRU GRU

LSTM

Hidden State
[1,1,256]

Hidden State
[1,1,256]

Cell State
[1,1,256]

LSTM

biLSTM GRUHidden State
[1,1,512]

GRU GRU

Hidden States at all
time steps [1,15,256]

Hidden State
[1,1,256]

Transformer GRUOutput
[1,15,256]

Mean

Last

Max

Conv1d

Positional
Encoding

LSTM Hidden State
[1,1,256]

Cell State
[1,1,256]

LSTM

Hidden States at all
time steps [1,15,256]

Model A:

Model B:

Model C:

Model D:

Model E:

Model F-I:

[1,1,256]

Encoder Decoder

Figure 1. Encoder and decoder implementation.

2.1. GRU-GRU Model

The baseline model is based on the GRU encoder and
the GRU decoder. There is a hidden state in the GRU model,
which represents the model’s memory of the past inputs and
its current internal state and is updated dynamically based
on the current input and the previous hidden state using the
gating mechanisms.

The hidden state of the GRU encoder at the last time step
is fed to the GRU decoder as the initial hidden state, which
is also called the context vector as Model A in Fig. 1.

1



2.2. LSTM-LSTM Model

LSTM is a more complex variant of GRU, which uses
memory cells, input gates, output gates, and forget gates
to selectively control the flow of information through the
network, allowing it to learn long-term dependencies in se-
quential data.

Apart from the hidden state, the cell state is an additional
variable that needs to be passed from the encoder to the en-
coder as Model B in Fig. 1.

2.3. biLSTM-GRU Model

BiLSTM employs two LSTM layers at once: one for
the forward path and the other one for the backward path.
Therefore, the hidden state size of bi-LSTM is two times the
hidden size of LSTM. To utilize all information from both
paths, the hidden size of the decoder GRU is increased to
512 from 256.

2.4. RNN Model with Attention Mechanism

The attention mechanism is introduced to allow the
model to focus on different parts of the input data while
processing it. When the decoder is making the prediction in
one step, it considers the hidden state of every step in the
encoder. The following modifications have been made:

• The attention scores are obtained by multiplying all
hidden states from the encoder and each hidden state
in the decoder. et = [sTt h1, . . . , s

T
t hN ], where hi is

the encoder hidden state, st is the decoder hidden state,
and et is the attention scores for step t.

• The attention distribution is obtained by applying
the softmax function to the attention scores. αt =
softmax(et), where αt is the attention distribution.

• The encoder’s hidden states are summed by the
weights from the attention distribution as the atten-
tion output, which contains information on the hid-
den states that receive high attention, denoted by at =∑N

i=1 α
t
ihi.

• The attention output is then concatenated with the to-
ken embedding.

2.5. Transformer-GRU Model

The transformer model is the latest model architecture
based on the attention mechanism. As it does not sup-
port variable length inputs, each sentence is padded with
the <PAD token> until the maximum length, i.e., 15.

The positional encoding is created to include the infor-
mation of the token order as [4]. The scaled token em-
bedding is added with the positional encoding with residual

connection before the transformer encoder layer. One trans-
former encoder layer is created with model dimension 256,
4 heads, and feed forward dimension 2048.

The GRU decoder requires the context vector from the
encoder at shape [1,1,256] as shown in Fig. 1. However,
the transformer output is at the shape [1,15,256]. Four ap-
proaches have been tested for this conversion:

• taking the mean values for each token;

• taking the last token vector;

• taking the max values for each token;

• adding a 1D convolution layer to reduce the channel
number from 15 to 1.

These approaches have been implemented in Model F-I.

3. Performance Comparison
Some random samples are evaluated for Model A and

H for subjective quality judgments as demonstrated in Fig.
2. Model A is able to capture the partial meanings of the
sentence and words although there are a few grammar mis-
takes. Model H understands the sentence relatively worse
and chooses the wrong words quite often.

Figure 2. Qualitative evaluation of Model A and Model H.

Rouge 1 and 2 scores of models are listed for comparison
in Table 1. Overall, the GRU-based models demonstrate the
best performance in this experimental setting.

Compared to GRU, LSTM has more trainable parame-
ters and modeling complexity due to more gates. Not only
the hidden state but also the cell state is passed from the
encoder to the decoder in the LSTM model, i.e., Model B.

2



Table 1. Model testing performance.

Model Encoder Decoder Attention # params Fmeasure Precision Recall

A GRU GRU N 4.848m 0.572 0.556 0.600
B LSTM LSTM N 5.112m 0.532 0.520 0.555
C bi-LSTM GRU N 7.445m 0.560 0.542 0.590
D GRU GRU Y 5.045m 0.579 0.561 0.611
E LSTM LSTM Y 5.374m 0.544 0.529 0.571
F Transformer† GRU N 5.768m 0.509 0.496 0.534
G Transformer∗ GRU N 5.768m 0.197 0.248 0.171
H Transformer§ GRU N 5.768m 0.548 0.539 0.570
I Transformer◦ GRU N 5.768m 0.541 0.531 0.563

(a) Rouge 1 scores.

Model Encoder Decoder Attention # params Fmeasure Precision Recall

A GRU GRU N 4.848m 0.376 0.360 0 405
B LSTM LSTM N 5.112m 0.333 0.322 0.356
C bi-LSTM GRU N 7.445m 0.359 0.342 0.389
D GRU GRU Y 5.045m 0.384 0.365 0.415
E LSTM LSTM Y 5.374m 0.345 0.330 0.371
F Transformer† GRU N 5.768m 0.311 0.298 0.334
G Transformer∗ GRU N 5.768m 0.114 0.153 0.097
H Transformer§ GRU N 5.768m 0.354 0.342 0.378
I Transformer◦ GRU N 5.768m 0.348 0.336 0.370

(b) Rouge 2 scores.

Reduction methods: † mean, ∗ last, § max, and ◦ Conv1d.

However, performance improvement is not observed, which
could be mainly due to the small dataset size. Over-sized
models tend to over-fit and lack generalization capability.
Moreover, GRU is more advantageous than LSTM in com-
puting efficiency.

In this experiment, adding an attention mechanism be-
tween the encoder and decoder in RNN models (e.g, Model
D VS Model A, Model E VS Model B) does not provide
a significant performance improvement. It could be due to
several reasons:

• Insufficient Training Data: Attention mechanisms tend
to be more useful when there is a large amount of train-
ing data available. The dataset here is quite limited;

• Over-complex Architectures: All models in the ex-
periment have complex architectures and millions of
trainable parameters. Considering the small number
of samples and small capped sentence length, over-
complex models tend to over-fit and have degrading
accuracy;

• Incorrect Hyperparameters: The model performance
is sensitive to the hyperparameters. As the mod-
els in the experiment are not fine-tuned, the addition
of the attention mechanism may not improve perfor-
mance. Adding attention increases the model com-
plexity, which may require more training epochs to
reach good performance;

• Incompatible Model Architecture: The encoder and
decoder only have one layer in the experiment, which
could be the bottleneck limiting the capability of the
attention mechanism.

Among transformer encoder models, Model G has se-
vere performance degradation, where only the last token di-
mension of the transformer encoder output is passed to the
GRU encoder. It implies the incompleteness of input con-
text for this approach. Other approaches take all context
variables into account during reduction, which could lead
to more complete information and thus better performance.
The best performance is achieved by Model H, which re-
duces the dimension by taking the maximum value similar
to the max pooling concept. It maintains the high context
values in the model.

Compared to other RNN-based models, transformer-
based models take much less computing time thanks to
their inherent parallelism. The performance degradation of
transformer-based models could potentially be explained by
the over model-complexity and the small data size.

4. Parameter Analysis

Hyperparameters are critical and impact the model per-
formance significantly.

To discover the performance limit of the model, I in-
crease the training epoch for the GRU encoder GRU de-
coder Model A. It can be observed in Fig. 3 that the training
loss continues to decrease over the training process but the
testing performance (i.e., Rouge 1 F-measure) stops to in-
crease after 5 epochs, which could indicate the upper limit
of current settings. The testing improvement within the first
five epochs is as small as 0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Train loss Test Rouge1 (F)

Figure 3. Training episodic loss and testing Rouge 1 F-measure of
model A (Encoder: GRU, Decoder: GRU).

Adding more layers, i.e., model complexity, damages the
model performance in the experiment as shown in Table 2.

Table 2. Performance of different layers.

Layer Encoder Decoder # params Fmeasure Precision Recall

1 GRU GRU 4.848m 0.572 0.556 0.600
2 GRU GRU 5.637m 0.559 0.538 0.592
3 GRU GRU 6.426m 0.488 0.479 0.507

3



Other parameters such as the optimizer, learning rate,
hidden size, and so on, are of great importance as well. To
obtain the best performance, all these hyperparameters are
required to be carefully fine-tuned in future work.

5. Conclusion
In this project, I have implemented and compared dif-

ferent Seq2Sqe models in the same parameter setting. The
main focus is on analyzing differences among models rather
than tuning parameters for the best performance. It is im-
portant to note that the findings and conclusions of this ex-
periment may not be applicable to experiments in other pa-
rameter settings.

In conclusion, the results show that the encoder GRU de-
coder GRU model with attention mechanism demonstrates
the best Rouge scores after training for 2 epochs, closely
seconded by the simplest GRU-GRU model. The effec-
tiveness of GRU models could be explained by the small
dataset size. The over complexity of LSTM and biLSTM
could damage the performance due to overfitting. The at-
tention mechanism has the potential to improve the model’s
performance. However, the improvement is not significant
for this small dataset and imperfect hyperparameters. The
performance of well-designed transformer-based models is
on par with the best models. Besides, they demonstrate su-
perior training speed thanks to parallel computation.

References
[1] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and

Yoshua Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014. 1

[2] Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long
short-term memory recurrent neural network architectures for
large scale acoustic modeling. 2014. 1

[3] Guixian Xu, Yueting Meng, Xiaoyu Qiu, Ziheng Yu, and
Xu Wu. Sentiment analysis of comment texts based on bil-
stm. Ieee Access, 7:51522–51532, 2019. 1

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 2

[5] Chin-Yew Lin. Rouge: A package for automatic evaluation of
summaries. In Text summarization branches out, pages 74–81,
2004. 1

4


	. Introduction
	. Model Implementation
	. GRU-GRU Model
	. LSTM-LSTM Model
	. biLSTM-GRU Model
	. RNN Model with Attention Mechanism
	. Transformer-GRU Model

	. Performance Comparison
	. Parameter Analysis
	. Conclusion

