
Assignment 1: Deep Learning Models for Sentiment Classification

Zhang Siyue
siyue001@ntu.edu.sg

1. Task 1 (Abstract)

Following the code base provided, I re-implemented the
Data Preparation, Model Building, Model Training, and
Model Evaluation processes. In data preparation, the spaCy
tokenizer was used to split the IMDB review sentences [1]
into discrete tokens. A vocabulary was built with 25,000
words, while the rest words were replaced by the <unk>
token and padding was represented by <pad>. The IMDB
dataset was split into the train (17,500 samples), validation
(7,500 samples), and test (25,000 samples) sets. The data
batch was fixed at 1,500 sentence length for MLP and CNN
models while the variable length was used for RNN models.
BCE loss was adopted for measuring the error between the
prediction and the ground truth label. Various optimizers
were tested during the training, including SGD, Adam, and
Adagrad for 50 epochs. Finally trained models are evalu-
ated in the test dataset by loss and accuracy. The best test
accuracy found in experiments was 84.86% by the 3-layer
MLP (hidden dimensions 500, 300, and 200) with 77.71
million trainable parameters.

2. Task 2 & 3 (Optimizer)

The RNN model was trained with SGD, Adam, and Ada-
grad optimizers at the same learning rate (i.e., 1e-3) for 50
epochs. As shown in Fig.1c, the training loss of the SGD
optimizer after 5, 10, 20, and 50 epochs is much higher
than Adam and Adagrad, which implies a slower learning
process. This is due to the fact that Adam and Adagrad
adaptively adjust the learning rate (LR) based on past gradi-
ents (e.g., momentum). Because they increase LR when the
gradient is too small, the convergence is accelerated. As the
learning process is much slower for SGD and far from con-
vergence, it has the lowest training and validation accuracy
at epoch 50. Adam approaches the minimum loss quickly
and has difficulty converging near the minimum due to its
LR adaption behavior, which leads to an increase in valida-
tion loss over time as Fig. 1d and a large variance in valida-
tion accuracy as Fig. 1b. Based on the above observations,
it can be concluded that 1e-3 LR is overvalued for the Adam
optimizer and we can switch to the SGD optimizer near the
end of the training to have a more stable convergence.

(a) Train accuracy (b) Validation accuracy

(c) Train loss (d) Validation loss

Figure 1. Comparison of different optimizers for RNN (SGD,
Adam, Adagrad).

3. Task 4 (Embedding)
In this task, I investigated two word-embedding meth-

ods, i.e., randomly initialized embedding and pretrained
Word2Vec embedding [2]. The controlled experiment was
conducted with the following parameters: Adam optimizer,
50 epochs, batch size 32, embedding dimension 300, RNN
model, and hidden dimension 512. A comparison has been
made as Table 1. The weights of Word2Vec embedding
were fixed during training due to the limited GPU memory.

It was observed that the Word2Vec embedding had a
lower accuracy and a higher loss for this IMDB review
sentiment classification task compared to the randomly ini-
tialized embedding, which was contrary to my expectation.
Such result could be explained by the following reasons:
the model with fixed pretrained weights has a smaller num-
ber of trainable parameters, thus lower model complexity

Method # params train loss train acc (%) valid loss valid acc (%) test loss test acc (%)
Random 7.64m 0.004 99.87 1.107 71.60 0.681 63.30
Word2Vec 4.17m 0.659 60.19 0.681 56.46 0.678 56.41

Table 1. Performance comparison of word-embedding methods.

1



and capability; the IMDB reviews may have a different vo-
cabulary from the one used by the Word2Vec model; the
semantic captured by the Word2Vec embedding may not
be effective for the target problem, a large amount of data
could be required for domain adaptation; the default hyper
parameters may not be effective for the Word2Vec embed-
ding which requires to be correctly tuned. If weights of
Word2Vec embedding are not frozen, the number of train-
able parameters will rise to 900 millions from 4.17 millions,
increasing the model complexity significantly.

4. Task 5 (Model)
Three types of models have been experimented with in

this task, including MLP, CNN, and RNN. All models were
trained by Adam optimizer, 50 epochs, LR 1e-3, and ran-
domly initialized embedding size 100.

MLP models consist of various numbers and sizes of lin-
ear hidden layers between the embedding layer and output
layer. MLP1 is a one-layer FFNN with a hidden dimension
of 500. MLP2 has two layers with hidden dimensions 500
and 300, and MLP3 has three layers with dimensions 500,
300, and 200. After the embedding layer, the tensor is flat-
tened into the dimension of [batch size, sentence length ×
embedding dimension ], which leads to a large number of
neurons in MLP models.

CNN models were built with three feature maps with
different sizes (i.e., 1,2, and 3) following the approach of
TextCNN in [3]. 2 feature map channels were used in the
CNN1 model while 5 channels were set in the CNN2 model.
The tensors after convolution were first max pooled and
then concatenated into a 1-D vector before the output layer.
Thanks to the convolutional layer, a substantial amount of
trainable parameters were avoided.

LSTM models, as an advanced variant of RNN model,
are capable of learning long-term dependencies, especially
in sequence prediction problems. Apart from the hidden
states, cell states are calculated as intermediate parame-
ters in LSTM. The hidden layer dimension was 256. The
bi-LSTM model refers to the bidirectional LSTM, which
consists of a forward path and a backward path of LSTM

Model # params valid loss valid acc (%) test loss test acc (%)
MLP1 77.50m 3.294 85.69 0.429 80.81
MLP2 77.65m 1.917 86.45 0.379 84.42
MLP3 77.71m 1.214 86.56 0.397 84.86
CNN1 2.501m 1.290 76.13 0.518 74.80
CNN2 2.503m 0.949 83.47 0.380 83.35
LSTM 2.87m 0.964 84.88 0.416 83.59
bi-LSTM 3.23m 0.976 87.50 0.394 84.14

Table 2. Test evaluation comparison of different models (MLP1:
1-layer FNN, MLP2: 2-layer FNN, MLP3: 3-layer FNN, CNN:
2-channel CNN, CNN2: 5-channel CNN, LSTM: unidirectional
LSTM, LSTM2: bidirectional LSTM).

units. Hidden states of two paths were concatenated before
the output layer, which made bi-LSTM (3.23 million) have
more trainable parameters than LSTM (2.87 million) and
thus higher model complexity.

During the training of MLP and CNN models, batches of
sentences were padded or cut to the same length (i.e., 1,500)
before being fed to models. LSTM models received batches
with variable length.

5. Discussion
According to the comparison made in Table 2, the model

with the best test accuracy is MLP3, which has 77.71 mil-
lion trainable parameters. The success of this model in
the sentence classification task is mainly due to the high
model complexity. Compared to other models, it took a
longer time in each training epoch. It is worth noting that
although CNN and RNN models have 20 to 30 times less
trainable parameters, they achieve comparable accuracy to
MLP models. It demonstrates the effectiveness of convo-
lution and recurrent techniques, significantly improving the
computational efficiency for model training and inference.
Compared to CNN models, LSTM models had generally
higher accuracy in validation and testing, which implies the
advantage of memory mechanism over the convolution ar-
chitecture for sequence data.

Taking a closer look at the training histories of different
models in Fig. 2 and 3, the performance improvement of
CNN and RNN models is much more significant than that
of MLP models in the beginning of training. The training
curves of CNN models were the most smooth while those
of MLP models had significant variance. MLP models were
much more difficult to converge compared to others. Over-
fitting was observed for all models in Fig. 3d as validation
loss increased after 10 epochs. It could be due to the high
LR and the high model complexity compared to the training
data size. Decaying LR and regularization techniques could
be used to mitigate the such issue.

6. Conclusion
In conclusion, adaptively adjusted LR helps to acceler-

ate the training process and improve model performance
like Adam and Adagrad optimizers. But they might lead to
oscillation and convergence issues. Therefore, techniques
such as decaying LR are critical to be combined with Adam
optimizer for a faster and smoother training curve.

Pretrained embedding could significantly improve the
performance of NLP models by leveraging large amounts of
data and complex language patterns that have been learned
during the pretraining process. However, in this experi-
ment, the pretrained embedding didn’t outperform the ran-
dom embedding. Various reasons could explain that: a
smaller amount of trainable parameters used, different vo-

2



cabularies, semantics between target dataset and pretraining
dataset, imperfect hyperparameters, etc. Fine-tuning is es-
sential when applying pretrained models to new tasks.

The MLP models demonstrated superior performance
due to the high model complexity from concatenated word
embeddings of words in the sentence. A large number of
trainable parameters slows down the training speed. MLP
models have obvious variance in the training process and
difficulty converging within 50 epochs. Convolution mech-
anism of CNN models and memory mechanism of LSTM
models showed great effectiveness in reducing required
computation while maintaining high accuracy. The archi-
tecture and parameter-sharing mechanism greatly smooth
the training curve. In contrast, MLPs do not have built-
in mechanisms for detecting local patterns or spatial rela-
tionships in the input, which can lead to a more complex
and noisy training process. CNN and RNN models are
more efficient and effective in learning from complex in-
put data such as images and sequences, and this can result
in a smoother and more stable training process.

(a) Train accuracy (b) Validation accuracy

(c) Train loss (d) Validation loss

Figure 2. Comparison of different models (MLP1: 1-layer FNN,
MLP2: 2-layer FNN, MLP3: 3-layer FNN, CNN: 2-channel CNN,
CNN2: 5-channel CNN).

(a) Train accuracy (b) Validation accuracy

(c) Train loss (d) Validation loss

Figure 3. Comparison of different models (MLP1: 1-layer FNN,
CNN: 2-channel CNN, CNN2: 5-channel CNN, LSTM: unidirec-
tional LSTM, LSTM2: bidirectional LSTM).

3



References
[1] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan

Huang, Andrew Y. Ng, and Christopher Potts. Learning word
vectors for sentiment analysis. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguis-
tics: Human Language Technologies, pages 142–150, Port-
land, Oregon, USA, June 2011. Association for Computa-
tional Linguistics. 1

[2] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013. 1

[3] Yahui Chen. Convolutional neural network for sentence clas-
sification. Master’s thesis, University of Waterloo, 2015. 2

4


	. Task 1 (Abstract)
	. Task 2 & 3 (Optimizer)
	. Task 4 (Embedding)
	. Task 5 (Model)
	. Discussion
	. Conclusion

