
Human Pose Estimation with Occlusion

Abstract

Human Pose Estimation (HPE) has been popular in the
computer vision community. Various deep learning mod-
els have been proposed to achieve superior performance on
HPE. However, if parts of the objects are occluded, their
performances would degrade due to the loss of context and
semantics. Towards this problem, this work proposes an ar-
tificial occlusion transformation to imitate in-the-wild oc-
clusions. Its use is tested on three well-known HPE mod-
els reproduced by ourselves, i.e. SimpleBaseline, HRNet,
and ViTPose. We first show how their performances have
been affected when presented with occluded images. Ex-
periments were then conducted to investigate the optimal
occlusion settings. Finally, we concluded that fine-tuning
images with occlusions could boost the robustness of the
model.

1. Introduction

Human Pose Estimation (HPE) has attracted much atten-
tion in the computer vision community. It aims at capturing
the critical points of human body parts and their connectiv-
ity from images and videos. HPE can be applied to a lot of
down-stream tasks, including Human Re-identification [3],
Human Pose Tracking [17], Human Action Recognition [8].
The general motion information it captures can be utilized
in Human-Computer Interaction, healthcare and augmented
reality, and so on [6].

However, there are lots of challenges in HPE. To cap-
ture the body pose, all the key body points belonging to the
object need to be detected accurately. But the distance from
the cameras to objects varies [15]. Some joints are occluded
by environments or other objects. Apart from those, the data
quality of cameras would be influenced by the weather and
the light conditions. Moreover, when there is more than
one person, different key points need to be assigned to cor-
responding objects accurately. Also, the key joints can be
articulated in various ways. When the number of key points
goes large, all the possible combination forms a large search
space. Besides, for 3D HPE, projecting from 2D to 3D in-
troduces another error source.

Towards those problems, countless effort has been done.

To describe the human body, the kinematics model, pla-
nar model, and volumetric model have been proposed [22].
From the problem scenarios perspective, existing methods
can be further divided into 2D and 3D HPE, single-person
and multi-person. For the single-person problem, methods
can be divided into regression-based methods and body-
part detection methods. For the multi-person problem, top-
down/bottom-up pipelines have been widely investigated.
The top-down pipelines detect and separate objects first and
then detect key points for each person. The bottom-up
pipelines detect all the key points at once and then assign
them to each person. This paper aims at exploring the 2D
single-person HPE.

With the proliferation of machine learning techniques
and the advancement of computational resources, deep
learning models have been widely used to solve the 2D
single-person HPE problem. While early works in human
pose estimates go back to 2001 [12], with the exponential
scale of computing over the last two decades, sophisticated
machine learning algorithms have taken the lead. Convolu-
tional neural networks such as Simple Baselines for Human
Pose Estimation and Tracking [18] with a ResNet-152 neu-
ral network reaches up to 73.7% average precision, with the
best work, DARK+extra [4] (HRNet-W48 model) achieving
77.4% AP [4] on the COCO dataset. Transformer models
such as ViTPose+ [19], based on the ViTAE-G model reach
up to 81.1% AP which outperforms CNNs. However, their
performance deteriorates when objects are occluded. Apart
from the possibility of losing some key points, occlusion
leads to a huge loss of context and semantics. Yet the con-
text and semantics are critical for accurate 2D HPE.

In this paper, we propose an occlusion augmentation
method to artificially hide random parts of the human body
in the image. Training with random occlusion, the models
present strong generalization ability when encountering oc-
clusions in the wild. To verify our augmentation method,
we reproduce three well-known baselines, i.e. the Sim-
pleBaseline [18], HRNet [16], and the ViT-Pose [19]. In
the experiments, we first show that their performances drop
when test images are occluded to support our motivation.
Then the boost of accuracy is presented when models are
fine-tuned with our occlusion augmentation method. Fur-
thermore, detailed analysis and insights are shared.
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2. Methods

In this section, we would first introduce our artificial
occlusion transformation. Then a brief introduction to
PoseResnet, HRNet, and ViTPose is presented.

2.1. Artifical Occlusion Transformation

To imitate in-the-wild occlusions, several augmentations
of occlusions can be generated and applied to images. We
can apply occlusions with different positions, sizes, shapes,
and colors. The colors in the corresponding occluded area
are replaced with a randomly selected color. Intuitive ex-
amples are provided in Fig. 1.

We introduce two variables, pocc ∈ [0, 1] and α ∈ [0, 1],
to control the probability of a sample being occluded and
the size of the occlusion, respectively. pocc can be inter-
preted as the dataset distribution, wherein pocc = 0.75
means that 75% of the dataset is occluded. We randomly
initialize coordinates for the occlusion shape based on the
bounding box coordinates of the subject’s skeleton. α con-
trols the offset distance between the shape and skeleton co-
ordinates, and with respect to the length and width of the
aforementioned bounding box. A larger α value constricts
the shape horizontally and vertically, i.e., a smaller area will
be occluded. Thus, varying α changes the size of the occlu-
sion while ensuring that it covers the subject of the input
image. Default training settings are kept as pocc = 0.5 and
α = 0.1. During testing, pocc = 1.0 and α = 0.1.

In the experiment section, we will first check how oc-
clusions would degrade the performance of the reproduced
models. Then, we will explore how to boost the robustness
of those models by fine-tuning models with the proposed
occlusion transformation.

2.2. Simple Baselines: PoseResnet

Compared to previous methods [5,13], the Simple Base-
lines [18] model, PoseResnet, is much simpler architec-
turally while achieving state-of-the-art performance in pose
estimation. Specifically, the network is composed of a
ResNet backbone with three additional deconvolutional lay-
ers (with batch normalization and ReLU activation) over the
final convolution stage. Each layer consists of 256 filters, a
kernel of size 4 × 4, and the stride is set to 2. The sim-
plicity of the architecture is mainly due to the inclusion of
deconvolutional layers — it combines the feature map up-
sampling and convolutional parameters into the same lay-
ers, as well as removes the usage of skip layer connections.

To generate predicted heatmaps {H1, ...,Hk}, where k
represents the number of key points, a final 1 × 1 convo-
lutional layer is added to the end of the model. Targeted
heatmaps, on the other hand, are generated by applying a
2D gaussian that is centered on the ground truth location
of each joint. The loss function used is Mean Squared

(a) Base image (b) Default (c) Smaller occlusion

(d) Right elbow center (e) Ellipse shape (f) Red colour

Figure 1. Occlusion transformation applied on one image example

Error (MSE) to compute the difference between predicted
heatmaps and targeted heatmaps.

2.3. HRNet

HRNet [14], or High-Resolution Net, aims to maintain
high-resolution representations by connecting convolutions
of high-to-low resolutions in parallel. Each resolution sub-
network (i.e., stage) consists of a sequence of convolu-
tions and a down-sample layer. While existing networks
follow a sequential fashion for their subnetworks, HRNet
employs parallel multi-resolution subnetworks. Starting
from a high-resolution subnetwork, high-to-low-resolution
subnetworks are added to form new stages. Each multi-
resolution subnetwork is then connected in parallel to form
a pyramid-like structure, where later stages inherit the reso-
lutions of the former stage, as well as an additional lower
resolution. Repeated multi-scale fusion then occurs, in
which parallel subnetworks repeatedly exchange informa-
tion with other subnetworks through multi-resolution group
convolutions. This exchanging of information is enabled
by exchange units. Repeated multi-resolution fusions yield
high-resolution representations that are richer in informa-
tion as they are boosted by low-resolution representations.

HRNet is composed of 4 parallel subnetworks and comes
in two sizes, HRNet-W32 and HRNet-W48. The numeral
in the name denotes the width of the first of the four stages.
There are 8 exchange units in the network.

2.4. ViTPose

The success of vision transformers [7, 11, 21] has moti-
vated their applications for the pose estimation task, such
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Method Hea Sho Elb Wri Hip Kne Ank Mean

PoseResnet 96.4 95.3 89.0 83.1 88.4 84.0 79.6 88.5
84.5 72.1 64.0 56.2 64.9 61.9 63.5 67.2

HRNet 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3
83.6 66.2 57.4 49.6 57.2 56.6 60.1 61.9

ViTPose 97.6 97.4 93.7 90.1 92.4 91.9 88.3 93.4
97.0 95.5 89.2 82.6 88.0 87.8 86.1 89.7

Table 1. Performance comparison of pretrained models.
PCKh@0.5 scores for the non-occluded test set (first row) and for
our proposed occluded test set (second row) are reported.

as TokenPose [9] and TransPose [20]. Most transformers
adopt a CNN as a backbone for extracting features and a
transformer of elaborate structures for refining these fea-
tures and modeling the relationship between key points of
the body. Contrary to these sophisticated designs, ViTPose
[19] revealed that plain vision transformers could achieve
superior performance meanwhile having the advantages of
simplicity, scalability, flexibility, and transferability. The
image is first embedded by 16 × 16 patches in 768 chan-
nels and then processed by one encoder and one decoder.
The encoder consists of 12 stacked transformer blocks, each
of which is formed by a multi-head self-attention (MHSA)
layer, a feed-forward network (FFN), and layer normaliza-
tion layers. Two kinds of lightweight and effective decoders
were proposed by [19]: the classic decoder is composed of
two deconvolution blocks, each block upsamples the fea-
tures maps by 2 times; the simple decoder directly upsam-
ples by 4 times with bilinear interpolation. The localization
heatmaps for the key points are obtained by a convolution
layer (kernel size 1× 1 for the classic decoder, 3× 3 for the
simple decoder) after the upsampling.

3. Experiments
In this section, we first briefly introduce the experiment

setting. Then the models performances with and without
occlusions are presented. Later, we show how fine-tuning
with the occlusions transformations can help boost models
performances. Besides, detail analysis is provided.

3.1. Experiment Settings

Evaluation Metric. Among a variety of evaluation met-
rics for 2D HPE summarized in [23], we have focused on
the following metrics:

• Percentage of Correct Keypoints (PCK). PCK mea-
sures the accuracy of the predicted key point and the
ground truth joint within a certain distance threshold.
Typical thresholds used are PCKh@0.5 (50% of the
head bone link), PCK@0.2 (20% of the torso diame-
ter), and 150 mm.

• Average Precision (AP) and Average Recall (AR).
Based on the aforementioned key point detection re-

sults, precision (the ratio of true positive results to the
total positive results) and recall (the ratio of true pos-
itive results to the total number of ground truth posi-
tives) can be obtained. AP computes the average pre-
cision value for recall over 0 to 1. The COCO evalua-
tion metrics also report AP across scales: small (APS),
medium (APM ), and large (APL). Respectively, each
scale represents the AP score of objects that cover be-
low 322, between 322 and 962, and above 962 areas,
where the area is measured as the number of pixels in
the image segmentation mask.

Datasets. We choose the MPII dataset [2] and the COCO
dataset [10] for experiments. The MPII human pose es-
timation dataset consists of 28k training and 11k test im-
ages, covering human activity under different viewing an-
gles. The common objects in context (COCO) dataset con-
tains 330k images in total, while 200k of them are labeled.

In addition to the pure image dataset, we need
ground-truth labels for the human pose joints. The
bearpaw/pytorch-pose [1] GitHub repository provides those
labels for COCO and MPII, converted to python-friendly
JSON files. Those labels consist of the corresponding im-
age name, the image width, and height, the body position
within the image, the relative body scale, as well as all joint
positions sorted as { nose, left eye, right eye, left ear, right
ear, left shoulder, right shoulder, left elbow, right elbow, left
wrist, right wrist, left hip, right hip, left knee, right knee, left
ankle, right ankle } for COCO (similar for MPII).

Data Augmentations. Apart from occlusions, we also
augment the data during training with random rotation
([−45◦, 45◦]), random scale ([0.65, 1.35]), and flipping fol-
lowing contemporary work [14, 18, 19]. We retain similar
parameters for training and testing as the original studies
for fair comparison in model performances. For PoseRes-
net and HRNet, ResNet-50 is used as the default backbone.
HRNet-W32 and ViTPose-B are used by default and simply
referred to as HRNet and ViTPose for the rest of the paper.

3.2. Pose Estimation on MPII

We evaluate the performance of three models, PoseRes-
net, HRNet, and ViTPose, on the MPII in various occlu-
sion settings. First, it is important to note the significant
drop in performance when testing the performance of mod-
els trained on non-occluded samples (i.e., the original train
and test set) on our occluded test set. As Table 1 shows,
the drop in performance ranges from 4% to 30% in differ-
ent models. It is interesting to note that while HRNet boasts
superior performance under non-occluded settings as com-
pared to PoseResnet, the drop in performance of the former
is much sharper when occlusion is introduced. Amongst the
three models, ViTPose is most robust towards occlusion as
suggested by the least drop in performance. This is proba-
bly due to MAE’s ability to reduce the noise of input data.
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Method pocc Mean (O) Mean (NO)

PoseResnet

0 65.5 86.2
0.25 80.4 86.2
0.5 80.8 86.3
0.75 81.2 86.7
1.0 81.2 85.6

HRNet

0 66.1 87.2
0.25 83.0 88.1
0.5 83.5 88.1
0.75 83.8 88.1
1.0 84.3 87.4

ViTPose

0 81.5 89.3
0.25 82.4 88.9
0.5 82.8 89.3
0.75 82.7 89.1
1.0 82.4 88.9

Table 2. Performance comparison of models trained with different
pocc values, then tested on the occluded test set (O; pocc = 1) and
non-occluded test set (NO; pocc = 0). Evaluation metric used is
PCKh@0.5.

By masking random patches of the image, which is similar
to our occlusion settings, the model is able to reconstruct
the missing patches and learn a better representation of the
input images.

Table 2 reports the pose estimation performance of each
model under various occlusion settings. The NO column
represents the ideal scenario where the entire human body
is visible in an image, whereas the O column resembles
real-life settings where parts of the human body might be
blocked by other human or obstacles. Under the occluded
test set setting (O column), it is observed that model trained
with non-zero pocc has a higher score than model trained
with zero pocc, which supports our initial hypothesis - a
model trained for a difficult task is performing better as
compared to a model trained for a easy task. While all three
models perform better using occluded training set, the per-
formance gap for ViTPose is relatively smaller than those
in PoseResnet and HRNet, which suggests that transformer
based methods are inherently more robust than CNN based
methods, therefore less occlusion is needed during training.
Under the non-occluded test set setting (NO column), it ap-
pears that there is minimal to no benefit when using higher
pocc values, i.e., more occluded samples in train set. The
overall results imply that the choice of pocc value for opti-
mal performance depends on the actual data distribution (%
of occluded data in the test set) and the type of model used
(CNN based or transformer based).

Method AP AP50 AP75 APM APL AR

PoseResnet 72.4 91.5 80.4 69.7 76.5 75.6
45.6 69.1 48.9 46.4 45.1 48.5

HRNet 76.5 93.5 83.7 73.9 80.8 79.3
44.2 66.0 47.8 45.6 43.1 47.1

ViTPose 75.8 90.7 83.2 72.3 82.6 81.1
69.8 87.7 77.1 65.3 77.4 75.2

Table 3. Performance comparison of pretrained models on the
COCO test set, without occlusion (first row) and with occlusion
(second row). Occlusion settings follow MPII implementation.

3.3. Pose Estimation on COCO

We extended our experiments to the COCO dataset and
observed a similar decline in model performance due to oc-
clusion in the test set across all metrics and all models. Ta-
ble 3 shows that the drop in model performance for HRNet
is rather significant when occlusion is introduced. The ef-
fect on ViTPose is the smallest. Due to computational limits
as size of COCO is considerably larger than MPII, we leave
further investigation on optimal distribution for future work.

4. Conclusion & Future Directions
We present a new dataset to evaluate the performance of

2D human pose estimation methods under various occlusion
settings and show the importance of achieving robustness
in this aspect. Our results show that while existing state-of-
the-art methods excel in the original problem task, they are
unable to perform well when the human subject is partially
occluded.

In this study, we fix α = 0.1 and examine the perfor-
mance of different occlusion settings on MPII data. We
leave further investigation of optimal values and robustness
under stronger occlusion settings on COCO for future work.
Extending the problem set to 3D human pose estimation can
also be an interesting direction, as viewing a subject from
different angles may alleviate occlusion. Another possible
extension is to evaluate performance in multi-person pose
estimation with occlusion. Finally, it would be beneficial to
build occlusion datasets for non-human pose estimation as
well.
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