
Optimizing the Serverless Workload at Cloud1

Jingyi Yang1, Siyue Zhang1, and Ziqi Yin12

1NTU SCSE.3

Abstract4

With the prevalence of cloud computing, both individuals and enter-5

prises are increasingly reliant on cloud providers to manage the computing6

infrastructure. Among the cloud-computing models, Function-as-a-Service7

has gained popularity over recent years as it completely hides the complex-8

ity of managing the server from the user. One key problem in providing9

FaaS is designing the cold start management policy, i.e., when to unload10

the application from memory after the function execution finishes. Design-11

ing the right cold start management is particularly challenging as one needs12

to trade off between reducing cold starts and saving memory resources. In13

this report, we evaluate existing cold start management policies for FaaS14

through simulation, and propose improvements over the hybrid histogram15

policy, a recently proposed adaptive policy.16

1 Introduction17

Function-as-a-Service (FaaS) is a serverless cloud-computing model that enables the18

user to trigger the application function executions (e.g., HTTP and timer) without19

the need to build and manage the complex underlying infrastructure, including con-20

tainers, operating systems, virtual and physical servers. Since being initially offered21

by the start-up PiCloud in 2010 [1], FaaS has gained unprecedented popularity and22

been adopted by most of the cloud providers, e.g., AWS Lambda, Google Cloud23

Functions, and Microsoft Azure Functions. The success of FaaS owes to its obvious24

advantages in efficiency, scalability, and cost. With FaaS, developers can spend more25

time on application development and less time on infrastructure management, which26

results in a much faster development turnaround. Functions could be scaled up or27

down automatically, independently, and instantaneously based on real-time traffic28

requirements. Moreover, the user is only required to pay for the resources when the29

function is running, metered with millisecond accuracy. Due to these advantages,30

1



FaaS has been applied in a broad range of use cases, such as the Internet of Things31

(IoT) [2], chatbot [3], data processing [4], and machine learning [5].32

In FaaS, the cloud provider is responsible for executing the application function33

and provisioning the resources needed. Thus, it is imperative for the provider to34

achieve high function performance with the least resources consumed. One of the35

key performance metrics is the function starting time. When the application code36

is already in the memory, its functions can be launched quickly, which is called a37

warm start. On the other hand, in the cold start, it takes more time to access38

the code in the persistent storage and start the function. However, keeping the39

application code in the memory at all times can be prohibitively expensive, especially40

for short and infrequent applications. Therefore, the trade-off between performance41

and resource cost is necessary. A fixed keep-alive policy is typically used by many42

cloud providers, which retains the applications in the memory for 10 and 20 minutes43

after execution [6]. To further optimize the trade-off, [7] firstly collected real-life44

function invocation data across Azure infrastructure for two weeks and characterized45

the heterogeneous production workloads. An adaptive hybrid histogram-based policy46

was proposed to balance the function warm start rate and wasted memory time. The47

policy dynamically regulates the loading and unloading of applications in the memory.48

In this serverless computing project, our work and contribution include:49

• Exploratory analysis of Azure FaaS workload data50

• Generation of realistic function and application traces based on given distribu-51

tions of invocation time, duration, application memory, etc.52

• Simulation and evaluation of fixed keep-alive policy and hybrid histogram policy53

• Proposition of improvements in the hybrid histogram policy54

• Conclusion and discussion of simulation results55

2 FaaS Workload Data Analysis56

We generate the workload according to the public dataset provided by Azure [8]. The57

workload consists of a list of functions, where each function is described by the func-58

tion id, corresponding app id, trigger type, start time, execution duration and memory59

cost. As the dataset only provides statistics on the distribution of the execution du-60

ration and memory cost, we need to generate the execution duration and memory61

cost for each function that we feed into the simulation. In the following, we introduce62

2



our workload generation process in detail. We also analyze the characteristics of the63

data generated.64

200 400 600 800 1000 1200
Allocated Memory (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Min
Average
Maximum

(a)

0 50000 100000 150000 200000 250000
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Min
Average
Maximum

(b)

0 10 20 30 40 50
Functions per App

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Fr
ac

tio
n

% of Apps
% of Invocations
% of Functions

(c)

Figure 1: (a) Distribution of allocated memory per app. (b) Distribution of function

execution time. (c) Distribution of the number of functions per app.

First, we load the function invocations counts data from the dataset. As the data65

contain the number of invocations in every 1-minute time slot for each function, we66

generate the function invocations by randomly sampling the start time from the 1-67

minute interval. As the dataset contains a huge number of function invocations, e.g.,68

day 1 contains over 1000,000,000 total function invocations, we sample a fraction of69

the application for our experiments. Specifically, we randomly sample 100 applica-70

tions from the dataset and include all function invocations of the 100 applications in71

3



the workload. We conduct the simulation based on the generated workload of the 10072

sampled applications.73

As discussed, we also need to generate the memory cost and execution duration74

for each function. It is worth noting that the dataset does not provide the duration75

time and memory cost directly, but statistics on the distribution of execution duration76

and memory cost i.e., values at different percentiles. We approximate the cumulative77

density function (CDF) of the execution duration and memory as a piece-wise linear78

function based on the distribution statistics. Specifically, for each adjacent pair of79

percentile values, we use a linear function to approximate the CDF.80

To demonstrate the pattern of the data we generate, we plot the graph based on81

the generation function workload of day 1. The distribution of allocated memory per82

application of day 1 is shown in Figure 1a. We have similar distribution compared83

to Figure 8 in the original paper, which indicates the consistency between the data84

we generate and the original data. The distribution of function execution time is85

shown in Figure 1b, which shows a similar distribution to Figure 7 in the original86

paper. And Figure 1c shows the CDF of the number of functions per application87

which has similar results compared to Figure 1 of the original paper. These data88

patterns demonstrate that the data we sampled has similar data distribution to the89

original data, which means high sampling quality.90

3 Simulation Designs91

To evaluate the performance of different cold start management policies, we build a92

simulator to simulate the execution of real-world invocation traces. We implement93

different cold start management policies on top of the simulator and record the key94

performance metrics for each. In this section, we first go through our simulator and95

simulation approach. We then discuss in detail different existing cold start manage-96

ment policies. We further propose improvements propose over the existing policies.97

3.1 Simulator98

We build the simulator to as closely resemble the real-world execution of the functions99

as possible, while ensuring the efficiency of the simulation process so that we are100

able to simulate on large-scale datasets. To achieve this, we first sort all function101

invocations by the start time in chronological order, and then simulate the function102

invocations and update the system state at the start of each function invocation. Note103

that this is much more efficient then updating the system state at fixed time intervals.104

Unlike [7], which considers the worst case of cold start and set all execution duration105

4



to 0 for the simulation, our simulator also takes into account the execution duration106

of each function invocation, so that our simulation results more closely reflects the107

actual execution.108

3.2 Fixed Keep-Alive Policy109

The fixed keep-alive policy is adopted by most FaaS providers [6, 9] and open-source110

FaaS frameworks [10]. It keeps the application loaded in the memory for a fixed111

amount of time after the function execution finishes, so that follow-up function invo-112

cations happening within the keep-alive window can have a warm start.113

While the fixed keep-alive help reduce the overall number of cold starts, it has114

several limitations. 1) High memory waste: the application is kept loaded in the115

memory the entire time before the next function invocation, and the memory the116

application takes up while being idle is wasted. 2) Cold start for infrequent in-117

vocation: the fixed keep-alive policy uses a one-size-fit-all approach where it uses118

the same keep-alive window for all applications. As a result, applications with infre-119

quent involvement have a high cold start rate as their idle time usually exceeds the120

keep-alive window.121

3.3 Hybrid Histogram Policy122

The fixed keep-alive policy could be ineffective when the function is called periodically123

with a long idle time. The application is kept in the memory after the function124

execution, but the next invocation comes much later than the end of the fixed keep-125

alive window, which results in a significant amount of memory waste. To overcome126

this issue, the hybrid histogram policy unloads the application for a pre-warm window127

after the function execution and before the start of the keep-alive window. The128

duration of these two windows is determined by the app’s IT distribution. For each129

application, ITs refer to the time intervals when none of its functions is executed.130

At the arrival of each invocation, if its application is already in the memory, there131

is no IT recorded. If the application is not loaded at the moment, the time interval132

is collected as IT, between the current invocation start time and the last moment133

when the application was loaded in the memory. ITs are recorded in a list every day,134

where each list demonstrates an IT distribution. The heterogeneity of IT distribution135

among applications and changes over time have been observed as in Figure 2.136

In each invocation of the simulation, there are three scenarios where the pre-warm137

window and the keep-alive window are determined differently as shown in Figure 3.138

Time-series forecast scenario is entered when there are many ITs longer than 4139

hours, namely out of bounds (OOBs). The auto Autoregressive Integrated Moving140

5



Figure 2: IT distributions of three selected applications in three days.

Average (ARIMA) model is used to forecast the next IT based on all historical ITs.141

The pre-warm window is set as 85% of the predicted IT and the keep-alive window142

is 30% of the predicted IT to capture the next invocation. When most ITs are not143

OOB and the histogram has a representative pattern, Use IT distribution scenario144

is valid. If the histogram has a high coefficient of variation (CV), its pattern is145

regarded as representative. In this scenario, the pre-warm window is defined as the146

5th percentile of IT distribution and the keep-alive window is equal to the difference147

between the 5th percentile and the 99th percentile as Figure 4. As for the last scenario,148

Be conservative, a standard keep-alive approach is applied when the histogram is149

not representative. This approach sets the pre-warm window as 0 and the keep-alive150

window as the range of the histogram. It retains the application in the memory151

after the execution for a period that is longer than most historical ITs to ensure the152

invocations have warm starts.153

Through dynamically updating the IT distribution histogram, the hybrid his-154

togram policy is able to capture the change in IT distribution over time for each ap-155

plication and adjust the pre-warm window and keep-alive window adaptively. Three156

scenarios in the hybrid histogram policy accommodate the heterogeneity in the IT157

6



Figure 3: Overview of the hybrid histogram policy. [7]

distributions for diverse applications. Therefore, it is a well-designed policy with158

balanced trade-offs.159

3.4 Proposed Improvements160

Trigger-Dependent Histogram161

The hybrid histogram policy treats all function invocations of the same application162

equally, i.e., the same rule is applied to determine the length of the pre-warm window163

and keep-alive window for all function invocations. However, function invocations of164

an application have different trigger types, and invocations with different trigger165

types may have different characteristics. For example, timer invocations and HTTP166

requests may have completely different idle time distributions. As the type of trigger167

affects the IT distribution of function invocations, we propose to adjust the cold168

start management policies based on both the application id and the trigger type.169

Specifically, we could choose different pre-warm and keep-alive windows for function170

invocations of different trigger types. For example, HTTP-triggered functions have171

more variance in the IT distribution, we take the keep-alive window between 10th172

percentile and the 90th percentile. While timer-triggered functions are more regular,173

we could take the keep-alive window between 1th percentile and the 99th percentile.174

Forecasted Histogram175

In the hybrid histogram policy, the pre-warm window and keep-alive window of the176

current invocation are determined by the collected IT distribution. When there are177

few ITs in the beginning of histogram collection cycle, the standard keep-alive ap-178

proach is applied as default. However, this IT distribution might have a representative179

7



Keep-alive WindowPre-warmWindow

5t
h
pe

rc
en
til
e

99
th
pe

rc
en
til
e

Idle Time (seconds)

Fr
eq

ue
nc
y

Figure 4: Example application idle time (IT) distribution used to select pre-warming

times and keep-alive windows.

pattern after more ITs are collected. Therefore, we propose to use the forecasted his-180

togram in this kind of situation. Based on the historical histograms, we could forecast181

the percentiles of the complete IT histogram, based on which the pre-warm window182

and keep-alive window are calculated. As the method is more effective when the IT183

distribution is changing gradually, we only apply the forecasting when there is no184

sudden change in historical histograms for early invocations every day.185

4 Simulation Results186

In this section, we present our simulation results of different cold start management187

policies. We simulate the function executions using the two cold start management188

policies and gather key performance metrics. For the fixed keep-alive policy, we189

use a keep-alive window of 10 minutes. For the hybrid histogram policy, we use190

combinations of different cut-off percentiles.191

Table 1 shows the number of cold start, number of warm start, cold start rate192

and memory waste time of each policy. For the hybrid histogram policies, the two193

numbers indicate the two cut-off percentiles. For example, the hybrid[5, 99] policy194

indicates we set 5 minimum percentiles idle time to be the pre-warm window, set195

5-99 percentiles idle time to be the keep-alive time, and give up the 99-100 maximal196

8



percentiles idle time. We observe that various hybrid histogram policies achieve com-197

petitive performance compared with the keep-alive policy in terms cold start rate.198

The hybrid [5, 99] policy achieves a 9.94e-5 cold start rate, and the memory wasted199

time is 7.20e6. In comparison, the fixed keep-alive policy achieves a 3.94e-05 cold200

start rate and the memory wasted time is 1.09e7. We can see the hybrid[5, 99] pol-201

icy achieves comparative performance on cold start rate but with much less memory202

wasted time. In general, for hybrid histogram policy, as the first cut-off percentile203

increases, the cold start rate increases and the memory waste time decreases. As204

the second cut-off percentile decreases, the cold start rate increases and the memory205

waste time decreases.206

Table 1: Policy Evaluation

Policy Cold start Warm start Cold start rate Memory waste time

Fixed Keep-Alive 1,592 4.04e7 3.94e-05 1.09e7

Hybrid [0, 100] 1,975 4.04e7 4.88e-05 9.39e6

Hybrid [5, 100] 3,695 4.04e7 9.13e-05 7.26e6

Hybrid [1, 99] 2,680 4.04e7 6.62e-05 8.15e6

Hybrid [5, 99] 4,021 4.04e7 9.94e-05 7.20e6

Hybrid [1, 95] 4,067 4.04e7 1.00e-04 7.89e6

Hybrid [5, 95] 5,408 4.04e7 1.34e-04 6.94e6

Impact of the histogram cutoff percentiles. To determine the cutoff percentiles207

of the hybrid histogram policy, we further evaluate the performance of the histogram208

policy as the cutoff percentile varies. Fig. 5 shows the cumulative density function209

(CDF) of the application cold start rate of different policies. We observe that the fixed210

keep-alive policy achieves the lowest cold start rate, as it reduces the cold start rate at211

the cost of keeping all applications in memory after function execution finishes. For212

hybrid histogram policies, the cold start rate increases as the first cut-off percentile213

increases, or as the second cut-off percentile decreases. Fig. 6 shows the normalized214

memory waste time of different policies, where the memory waste time is normalized215

by that of the fixed keep-alive policy. We observe that the fixed keep-alive policy has216

the highest waste memory time, while the waste memory time increases as the first217

cut-off percentile increases, or as the second cut-off percentile decreases for hybrid218

histogram policies. From the two figures, we identify that Hybrid [5, 99] has the most219

suitable cut percentiles, as it achieves a significant reduction in waste memory time220

without compromising too much on cold start rate.221

9



0.0 0.2 0.4 0.6 0.8 1.0
App Cold Start (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Hybird [0, 100]
Hybird [1, 95]
Hybird [1, 99]
Hybird [5, 100]
Hybird [5, 95]
Hybird [5, 99]
10-min Fixed

Figure 5: Cumulative density function of app cold start rate of different policies.

10
-m
in 
Fix
ed

Hy
bir
d [
0, 
10
0]

Hy
bir
d [
5, 
10
0]

Hy
bir
d [
1, 
99
]

Hy
bir
d [
5, 
99
]

Hy
bir
d [
1, 
95
]

Hy
bir
d [
5, 
95
]

Policy

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
W
as

te
d 
M
em

or
y 
Ti
m
e

Figure 6: Waste memory time of different policies.

5 Conclusion and Discussion222

In this report, we evaluate two existing FaaS cold start management policies, the fixed223

keep-alive policy, and the hybrid histogram policy. We generate a realistic workload224

of function execution traces from the public dataset released by Azure, simulate the225

function executions using the two cold start management policies, and gather key226

performance metrics. Our experiments demonstrate the superior performance of the227

hybrid histogram policy over the fixed keep-alive policy. We further propose two228

improvements over the hybrid histogram policy, Trigger-Dependent Histogram and229

Forecasted Histogram.230

10



References231

[1] L. Rao, Picloud launches serverless computing platform to the public, https://232

techcrunch.com/2010/07/19/picloud-launches-serverless-computing-233

platform-to-the-public/, 2010.234

[2] R. Wolski, C. Krintz, F. Bakir, G. George, and W.-T. Lin, “Cspot: Portable,235

multi-scale functions-as-a-service for iot,” in Proceedings of the 4th ACM/IEEE236

Symposium on Edge Computing, 2019, pp. 236–249.237

[3] S. Choudary, “Chatbot on serverless/lamba architecture,” Asian Journal of En-238

gineering and Technology Innovation (AJETI), p. 190, 2018.239

[4] A. Pogiatzis and G. Samakovitis, “An event-driven serverless etl pipeline on240

aws,” Applied Sciences, vol. 11, no. 1, p. 191, 2020.241

[5] V. Sreekanti et al., “Cloudburst,” Proceedings of the VLDB Endowment, vol. 13,242

no. 12, pp. 2438–2452, Aug. 2020. doi: 10.14778/3407790.3407836. [Online].243

Available: https://doi.org/10.14778%2F3407790.3407836.244

[6] M. Shilkov, Cold starts in aws lambda, https://mikhail.io/serverless/245

coldstarts/aws/.246

[7] M. Shahrad et al., “Serverless in the wild: Characterizing and optimizing the247

serverless workload at a large cloud provider,” in 2020 USENIX Annual Tech-248

nical Conference (USENIX ATC 20), USENIX Association, Jul. 2020, pp. 205–249

218, isbn: 978-1-939133-14-4. [Online]. Available: https://www.usenix.org/250

conference/atc20/presentation/shahrad.251

[8] Azure function traces, https://github.com/Azure/AzurePublicDataset,252

2021.253

[9] M. Shilkov, Cold starts in azure functions, https://mikhail.io/serverless/254

coldstarts/azure/.255

[10] OpenWhisk, Open source serverless cloud platform, https : / / openwhisk .256

apache.org/.257

11

https://techcrunch.com/2010/07/19/picloud-launches-serverless-computing-platform-to-the-public/
https://techcrunch.com/2010/07/19/picloud-launches-serverless-computing-platform-to-the-public/
https://techcrunch.com/2010/07/19/picloud-launches-serverless-computing-platform-to-the-public/
https://techcrunch.com/2010/07/19/picloud-launches-serverless-computing-platform-to-the-public/
https://techcrunch.com/2010/07/19/picloud-launches-serverless-computing-platform-to-the-public/
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14778%2F3407790.3407836
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/aws/
https://mikhail.io/serverless/coldstarts/aws/
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://www.usenix.org/conference/atc20/presentation/shahrad
https://github.com/Azure/AzurePublicDataset
https://mikhail.io/serverless/coldstarts/azure/
https://mikhail.io/serverless/coldstarts/azure/
https://mikhail.io/serverless/coldstarts/azure/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://openwhisk.apache.org/

	Introduction
	FaaS Workload Data Analysis
	Simulation Designs
	Simulator
	Fixed Keep-Alive Policy
	Hybrid Histogram Policy
	Proposed Improvements
	Simulation Results
	Conclusion and Discussion

