Model concept

TTS: Text-to-SQL

RTR: Retrieve-then-Reason/End-to-End
FT: Fine-tuning

ICL: In-Context Learning

Pre En De
train | coding

Prompt
coding ing

Paper

Test

Design

(2020)

TTS-FT,
RTR-FT

Pretrained by masked language reconstruction
on 26M examples (English Wikipedia & WDC
WebTable);

Encode table content snapshot only, top K rows
most relevant to text (highest n-gram overlap);
Propose vertical self-attention for info flow
across cell representations of different rows;

TAPAS
(2020)

RTR-FT

Pretrain by masked language reconstruction
(whole word and whole cell) on 3.3M Infobox
and 2.9M WikiTable tables;

Additional positional embeddings for tabular
structure;

Two classification layers for selecting cells and
aggregation operators that operate on the cells;
Surrounding texts of the tables as a proxy of
natural language utterance;

RAT-SQL
(2020)

TTS-FT

Encode schema as a directed graph (col and tbl
as nodes, relation as edge) and question word;
Link schema and question based on name
(match type) and value;

Decode a SQL abstract syntax tree in depth-first
traversal order then use LSTM;

LGESQL
(2021)

TTS-FT

Propose dual relational graph attention layer
combining node-centric graph and line graph,
where node embeddings in one graph play the
role of edge features in another graph;

Add one decoder for auxiliary “graph pruning”
task (distinguish irrelevant schema items from
golden schema items used in the target query);

GAP
(2021)

TTS-FT

Pretrain by column prediction (whether used in
the input utterance), column recovery (replace
col names with cell value, recover from
utterance or cell value), SQL generation given
utterances and schema;

Propose (30k crawled) SQL-to-text and (crawled)
table-to-text models to produce large scale
synthetic datasets with enough quality;




Grappa
(2021)

TTS-FT,
RTR-FT

Pre-trained by column (appear in SQL) and
operation prediction on 475k synthetic
question-SQL pairs and masked language
reconstruction on 392k table-language pairs;
Additional classification layer for column and
operation prediction;

Induce grammar from annotated Text-to-SQL
examples to synthesize new examples;

PICARD
(2021)

TTS-FT

Constrained auto-regressive decoding by
rejecting inadmissible tokens;

Inputs: token ids, predicted log-softmax scores,
schema info;

Detect invalid keyword and schema item, invalid
query structures, invalid table scope;

NatSQL
(2021)

TTS-FT

Propose a new SQL intermediate representation
to address mismatch between NL and SQL
(simplify queries: remove GROUP BY, HAVING,
FROM, JOIN ON, need for nested subqueries and
set operators, reduce number of schema items);
NLQ/T «<—NN model—IR<—rule—SQL

SmBoP
(2021)

TTS-FT

Decode top K program sub-trees of a certain
height at each step, learn representation of
sub-program in previous step, bottom-up
parsing, tree based on standard query language
‘relational algebra’, comparable accuracy to
RAT-SQL with 2x speed-up;

Table
Former
(2022)

RTR-FT,
TableFV

Introduce 13 types of attention biases for
table-text structure (e.g., same row, header to
column cell, cell to sentence);

Remove absolute row/col order in the positional
embedding, add relative positional info by
assigning 1 bias type with 1 learnable scalar;
Bias matrix is added to Q/K similarity before
SoftMax;

Robust to row/col shuffling;

TAPEX
(2022)

RTR-FT,
TableFV

Pretrain only by SQL execution task;

Table source: high-quality 1,500 WTQ tables;
SQL templates from SQUALL;

SQL executor (e.g., MySQL) as supervision;

10




OmniTab
(2022)

RTR-FT

Pretrained by masked language reconstruction
using both natural and synthetic data + QA loss
using TAPEX QA pairs;

Natural: use retrieval to pair Wikipedia table
and NL sentences;

Synthetic: given table, use SQL sampler and
SQL2NL model to generate Q&Ar;

Salient mention masking (mask shared
information between table and text);

SQL2NL self-train using SQL and generated text
with high OmniTab model scores;

Unified
SKG
(2022)

TTS-FT,
RTR-FT,
TableFV

Unify 6 families 21 tasks into text-to-text format
(semantic parsing, QA, data-to-text,
conversational, fact verification,
program-to-text);

Pasta
(2022)

TableFV

Pretrain with 6 types of sentence—table cloze
questions synthesized from WikiTables (Filter,
Aggregation, Superlative, Comparative, Ordinal,
and Unique), 1.2M pairs, 20k table<500 cells;
Use NL & SQL template to generate operation
aware pre-training samples;

Choose DeBERTaV3 for its positional encoding
scheme;

Preprocess table during fine-tuning (select
columns containing entities linked to statement,
reorder table by rows by relevance score);

TaCube
(2022)

RTR-FT

Augment input table with rule-generated
guestion-sensitive pre-computation;

Select operator types by textual mention in
questions, find col/row by matching headers,
and cell values with NLQ, compute all;

RegHNT

57

N4

(2022)

RTR-FT

RESDSQL
(2023)

TTS-FT

Ranking-enhanced encoder: rank and filter
schema items based on additional classification
logits (4 tbl, 5 col each);

Skeleton-aware decoder: generate SQL skeleton
first, select value from input to fill skeleton slots;
Focal loss for tbl and col classification
(referenced or not);

Execution-Guided SQL Selector;

11




DIN-SQL
(2023)

TTS-ICL

4-module workflow, 10 task-specific exemplars
Schema linking (identify references to schema
and condition values);

Classification & decomposition
(easy/non-nested complex/nested complex) for
each query;

SQL generation (non-easy first generate
intermediate representation then SQL);
Self-correction (assume buggy SQL ask to fix or
ask to check);

Few(1)
shot Table
Reasoners
(2023)

RTR-ICL

Truncate table with first 22 rows, first 8 cols, 10
first words in each cell;

GPT3/Codex CoT;

Findings: LLMs sometimes make simple mistakes
on symbolic operations; Unable to generalize to
30+ row table; LLM prompting exhibits
unpredictable randomness; far from SOTA;

BINDER
(2023)

TTS-ICL,
TableFV

Combine SQL and LLM, use LLM to decide which
parts can be converted to SQL, unanswerable
parts are replaced by LLM API;

LLM API produce values for unanswerable parts
to be integrated into SQL to get candidate
answers, finally vote for final answer;

Input 14 ICL exemplars, schema and first 3 rows;
Core: bring in LLM for given table unentailed
knowledge;

Dater
(2023)

RTR-ICL

Use LLM to decompose large table into relevant
small ones (by predict row and col indexes, e.g.,
col(name, cost), row(1,3,13));

Directly decompose a complex question fall into
hallucination => generate abstract sub-question
with masked value, convert abstract logic into
SQL queries, execute SQL on decomposed table,
backfill mask in sub-question with queried
value, reason on sub-table & sub-question;
Core: tackle hallucination by only using spans
from given table;

TableGPT
(2023)

RTR-ICL

12




